Skip navigation

Tag Archives: Hydrogen economy

The first few hydrogen atom electron orbitals ...

The first few hydrogen atom electron orbitals shown as cross-sections with color-coded probability density (Photo credit: Wikipedia)

Hydrogen is well-known as a potential source of clean energy of the future. But it is not available in a free form; its generation from   water using Electrolysis requires more energy than, a free Hydrogen can generate.  It requires about 5kws power to generate 1 m3 Hydrogen gas, which means, it requires about 56 Kw power to generate 1 Kg Hydrogen using water electrolysis. But 1Kg Hydrogen can generate only about 15-20 Kw Electricity using a Fuel cell. This anomalous situation makes Hydrogen generation using water electrolysis uneconomical for clean power generation. That is why most of the Hydrogen is now generated by steam reforming natural gas. Another reason for using natural gas is, to cut the cost of Hydrogen and also, to make a smooth transition from fossil economy to Hydrogen economy using existing infrastructures. Power generation and transportation using Hydrogen and Fuel cell has been commercially tested, proven and ready for deployment. However, we still have to deal with emission of greenhouse gas during steam reformation of natural gas due to the presence of carbon atom in natural gas.

Meanwhile, one American company recently announced a break-through technology that will generate free thermal energy from atomic Hydrogen using a patented process. The inventor of the process claims, when atomic Hydrogen is allowed to react with a specific Catalyst, Hydrogen atom undergoes a transition to a new atom called “Hydrino”, releasing energy while the electron in the atom shifts to a lower orbit close to proton. It was believed so far that the electron in Hydrogen atom is at its lowest level (ground level) and the closest to proton. This is the first time somebody claims that there is a lower state than the ground state  in Hydrogen atom and the amount of energy released in this transition to ‘Hydrino”,  is  in between by an uncatalyzed Hydrogen atom by combustion and nuclear energy. Unlike nuclear energy, this energy is non-radioactive. But the energy released by this process is more than 200 times than energy released by Hydrogen atom by normal combustion. The reaction does not create any pollution or radio-active materials as by-products. The process has been tested, verified and certified by scientists in few  laboratories and universities.

The above process offers great hope to generate a clean, non-polluting energy at the lowest cost. The ‘dihydrino and Hydrogen is separated and Hydrogen is recycled back to continue the process while’dihydrino’ has other potential commercial applications. The inventor has named this power as “Black power” as he hypotheses that such phenomena explain the presence of “dark matter” in Galaxies. According to quantum mechanics, the energy level of a normal Hydrogen atom is at its ground level as its minimum level (N=1), but its energy level increases at higher states such as N=2, 3, 4.When the energy level jumps from higher (excited state) to a lower level, it emits energy in the form of photon of light (Quanta).The spectrum of such emission matches the ultraviolet light of the sun. Since sub-quantum atoms are non-radioactive, the inventor claims that he is duplicating the above process of Nature by a catalytic thermal process in the state of Plasma using a specific Catalyst.

If such a large thermal energy is released by formation of ‘Hydrino’atom in the above process, then such energy can be used to generate Hydrogen by conventional water electrolysis at a fraction of the cost.

Then, Hydrogen economy can become a commercial reality and the above technology has a potential not only to generate power at fraction of a cost of the fossil fuel but also to generate a clean and non-polluting power. The inventor has also hypothesised a “grand new unified theory” of atom as the basis for the above invention. Mainstream scientists have always have been reluctant to support such “free energy” theories but, when someone can prove the process of generating an excess energy (more than 200 times than the theoretical energy released by an exothermic chemical reaction) and it is non-radioactive then mainstream scientists may be sidelined by world community. It is always possible to prove something unique without any theory   and come out later with a theoretical explanation to satisfy the scientific community. Many discoveries in the past were by mere accidents and one should have an open mind to look into any new concepts without any bias, especially if the discovery can resolve serious problems of humanity at  times  of crisis.

 

Advertisements

We now generate electric city from heat, obtained by combustion of fossil fuel such as coal, oil and gas. But such combustion generates not only heat but also greenhouse gases such as Carbon dioxide and oxides of Nirogen.The only alternative to generate power without any greenhouse gas emission is to use a fuel with zero carbon. However, oxides of Nitrogen will still be an issue as long as we use air for combustion because atmospheric air has almost 79% Nitrogen and 21% oxygen. Therefore it becomes necessary to use an alternative fuel as well as an alternative power generation technology in the future to mitigate greenhouse problems.

Hydrogen is an ideal fuel to mitigate greenhouse gases because combustion of Hydrogen with oxygen from air generates only water that is recyclable. Combining Hydrogen with Oxygen using Fuel cell, an electrochemical device is certainly an elegant solution to address greenhouse problems. But why Hydrogen and Fuel cell are not commonly available? Hydrogen is not available freely even though it is abundantly available in nature. It is available as a compound such as water (H2O) or Methane (CH4) and Ammonia (NH3). First we have to isolate Hydrogen from this compound as free Hydrogen and then store it under pressure. Hydrogen can easily form an explosive mixture with Oxygen and it requires careful handling. Moreover it is a very light gas and can easily escape. It has to be compressed and stored under high pressure.

Generation of pure Hydrogen from water using Electrolysis requires more electricity that it can generate. However, Hydrogen cost can be reduced using renewable energy source such as solar thermal. The solar thermal can also supply thermal energy for decomposing Ammonia into Hydrogen and Nitrogen as well as to supply endothermic heat necessary for steam reformation of natural gas into Hydrogen. On-site Hydrogen generation using solar thermal using either electricity or heat can become a commercial reality. Hydrogen generation at higher temperatures such as Ammonia decomposition or steam reformation can be directly used in Fuel cell such as Phosphoric acid Fuel cell.

Phosphoric acid fuel cell is a proven and tested commercial Fuel cell that is used for base load power generation. It is also used for CHP applications. Hydrogen generation using solar thermal and power generation using Fuel cell is already a commercial reality and also an elegant solution to mitigate greenhouse gases. Large scale deployment of Fuel cell and solar thermal will also cut the cost of installations and running cost competing with fossil fuel.Fuecell technology has a potential to become a common solution for both power generation and transportation.

While Government can encourage renewable energy by subsidizing PV solar panels and discourage fossil fuel by imposing carbon tax, they should give preference and higher tariff for power purchase from Solar thermal and Fuel cell power generators. This will encourage large-scale deployment of Fuel cell as a potential base load power source.

Ammonia is a well-known industrial chemical that is manufactured worldwide as a precursor for the production of Urea. The chemistry and technology of Ammonia synthesis is well-known and well established. It was a land mark achievement to fix atmospheric Nitrogen into the soil in the form of Urea as a fertilizer. It has 17.6% Hydrogen and 82.4% Nitrogen making it an ideal fuel for combustion when compared to Gasoline in terms of greenhouse gas emission because Ammonia no carbon. Handling free Hydrogen has always been a concern due to its explosive nature and lightness. Transportation of Hydrogen in the form of Ammonia is relatively cheaper and safer. A non-regulated Ammonia nursing tank at 265 psi pressure holds 3025kg Ammonia, containing 534kg Hydrogen, because a 5900 gallon Hydrogen tube trailer at 3200 psi pressure, contain only 350kgs of Hydrogen. Low pressure Ammonia tank with less than 25% volume contain more than 53% Hydrogen than a high pressure tube trailer. Ammonia has a lower volumetric energy density compared to other fuels.However, after subtracting energy required to elicit hydrogen from each fuel, hydrogen emerges with highest energy density compared to other fuels, and it is the only fuel which is carbon free. These qualities make Ammonia, a potential  substitute for Gasoline.

Ammonia need not be used as direct combustible fuel in internal combustion engines but it can be used as Hydrogen carrier safely and economically. The Hydrogen resulting from the decomposition of Ammonia can be used as fuel in a Fuel cell car as well as in a combustion engine. It can also be used to generate small on site power using a Fuel cell or IC engine. For example, 534kg Hydrogen can generate Electricity up to 10 MW and up to 6Mw thermal energy using a Fuel cell.

Currently ammonia is manufactured using fossil fuel source such as natural gas or naphtha to generate Hydrogen in the form of Syngas.But this can be effectively substituted with renewable source of Hydrogen such as Electrolysis of water using renewable solar thermal power or wind energy. Alternatively a biogas can be steam reformed to generate Hydrogen similar to natural gas. The generated Hydrogen can be compressed and stored.

Nitrogen forms 79% of atmospheric air and it can be obtained by air liquefaction and separation by distillation or by simple membrane separation method to separate air into Nitrogen and Oxygen. The resulting Nitrogen can be compressed and stored for Ammonia sysnthsis.Production of Ammonia using Bosch Haber process is well-known. Ammonia can be transported in pipelines, in tankers by road, rail or ship to various destinations.

Ammonia can be readily be used as fuel using a spark ignited combustion engine with little changes because Ammonia is classified as non-combustible fuel. Alternatively, it can be decomposed in a catalytic bed reactor and separated into Hydrogen and Nitrogen using PSA (pressure swing adsorption) system. The resulting Hydrogen can be stored to run a Fuel cell car like Honda FCX. Ammonia, as a Hydrogen carrier can substitute gasoline as an alternative fuel for transportation and power generation. All necessary technologies and systems are commercially available to make it a commercial reality.

 

We  acknowledge that solar energy is a potential renewable energy source of the future. The total energy need of the world is projected in the next 40 years to be 30 TW (terra watts) and only solar energy has a potential to meet the above demand. However, harnessing sun’s energy to its fullest potential is still a long way to go. Concentrated solar power (CSP) offers a greater hope to fill this gap. The main reason is the cost  advantage of CSP compared to PV solar and energy storage technologies and their costs.

The cost of PV solar has steadily decreased in the past few years. Though the cost of solar cell has come down to $0.75 per watt, the overall cost of the PV system is still around $ 3.00 per watt. This is due to the cost of encapsulation; interconnect wiring, mounting of panels, inverters and battery bank. The overall cost of the system will not come down drastically beyond a point. This makes PV solar still more expensive compared to conventional power generation using fossil fuels. People can understand the value of renewable energy and impending dangers of global warming due to greenhouse gases, but the final cost of energy will decide the future of energy sources.

In PV solar the sun’s light energy is directly converted into Electricity, but storing such energy using batteries have certain limitations. PV solar is suitable for small-scale operations but it may not be cost-effective for large-scale base load power generation. The best option will be to harness the sun’s thermal energy and store them and use them to generate power using the conventional and established methods such as steam or gas turbines. Once we generate thermal energy of required capacity then we have number of technologies to harness them into  useful forms. As we mentioned earlier, the thermal energy can trigger a chemical reaction such as formation of Ammonia by reaction between Hydrogen and Nitrogen under pressure, which will release a large amount of thermal energy by exothermic reaction. Such heat can be used to generate steam to run a stem turbine to generate power. The resulting ammonia can be split with concentrated solar power (CSP) into Hydrogen and Nitrogen and the above process can be repeated.

The same system can also be used to split commercial Ammonia into Hydrogen and Nitrogen. The resulting Hydrogen can be separated and stored under pressure. This Hydrogen can be used to fuel Fuel cell cars such as Honda FXC or to generate small-scale power for homes and offices.

By using CSP, there is potential of cost savings as much as 70% compared to PV solar system for the same capacity power generation on a larger scale. Focusing sun’s energy using large diameter parabolic troughs and concentrators, one can generate high temperatures.  Dishes can typically vary in size and configuration from a small diameter of perhaps 1 meter to much larger structures of a dozen or more meters in diameter.  Point focus dish concentrators are mounted on tracking systems that track the sun in two axes, directly pointing at the sun, and the receiver is attached to the dish at the focal point so that as the dish moves, the receiver moves with it.  These point focus systems can generate high temperatures exceeding 800ºC and even 1,800ºC.

The temperature required to run a steam turbine does not exceed 290C and it is quite possible to store thermal energy using mixture of molten salts with high Eutectic points and use them to generate steam. Such large-scale energy storage using lead-acid batteries and power generation using PV solar may not be economical. But it will be economical and technically feasible to harness solar thermal energy using CSP for large-scale base load power generation. It is estimated that the cost of such CSP will compete with traditional power generation using coal or oil in the near future.CSP has potential to generate cost-effective clean power as well as a fuel for transportation.

Majority of current power generation technologies are based on thermodynamic principles of heat and work. Heat is generated by  chemical reactions such as combustion of coal, oil or gas with air or pure oxygen. This heat of combustion is then converted into work by a reciprocating engine or steam turbine of gas turbine. The mechanical energy is converted into electricity in power generation and as a motive force in transportation. The fundamental principles remain the same irrespective of the efficiencies and sophistication we incorporated as we progressed. The efficiency of these systems hardly exceeds 30-40 of the heat input, while the remaining 60-70 heat is wasted. We were also able to use this waste heat and improved the efficiency of the system by way of CHP (combined heat and power) up to 80-85%.But this is possible only in situations where one can use both power and heat simultaneously. In a centralized power plant such large heat simply dissipated as a waste heat through cooling towers and in the flue gas. This is a huge loss of heat because a substantial part of heat of combustion is simply vented into the atmosphere in the form of greenhouse gases. If ‘greenhouse gas’ and ‘Global warming’ were not issues of concern to the world, probably we would have continued our business as usual.

Generation of heat by combustion of hydrocarbon is one example of a chemical reaction. In many chemical reactions, heat is either released or absorbed depending upon the type of reaction, whether it is exothermic or endothermic. Sometimes these chemical reactions are reversible. It may release heat while the reaction moves forward and it may absorb heat while it moves backward in the reverse direction. By selecting such reaction one can make use of such energy transformations to our advantages. One need not release the heat and then release the product of reaction into the air like burning fossil fuels.

Ammonia is one such reaction. When Hydrogen and Nitrogen is reacted in presence of a catalyst under high temperature and pressure the reaction goes forward releasing a large amount of energy as practiced in industries using Heber’s process. The heat released by this reaction can be converted into steam and we can generate power using steam cycle. The resulting Ammonia can further be heated in presence of a catalyst by external heat due to endothermic nature of the reaction and split into Hydrogen and Nitrogen.  However, such heat can be supplied only from external sources. One University in Australia is trying use the above principle by using solar thermal energy as a source of external heat. The advantage of this system is power can be generated without burning any fossil fuel or emitting any greenhouse gas. One can use a renewable energy sources such as solar thermal and also use Ammonia as a storage medium.

Ammonia is a potential source of energy to substitute fossil fuels. However, such Ammonia is now synthesized using Hydrocarbon such as oil and gas. The source of Hydrogen is from synthesis gas resulting from steam reformation of a Hydrocarbon. Hydrogen can also be derived from water using electrolysis using renewable energy source. In both the above cases, renewable energy is the key, without which no Hydrogen can be produced without a Hydrocarbon or an external heat is supplied for splitting Ammonia.

Ammonia can also be split into Hydrogen and Nitrogen using external heat.  The resulting Hydrogen can be used to generate power using a Fuel cell or run a Fuel cell car. Nitrogen also has many industrial applications.Thereoefore ammonia is a potential chemical that can substitute fossil fuels in the new emerging renewable economy.

World is busy developing alternative to Fossil fuel to cut anthropic Greenhouse gas  to avoid global warming. In fact all forms of alternative energy sources except nuclear energy are ‘solar energy’ from the sun, in one form or another. Sun has supplied energy from the time earth was born. It has conducted   ‘photosynthesis’ by supplying light energy and converting atmospheric carbon dioxide and water into glucose for plants, animals and human beings. The excess carbon from the ‘Carbon cycle’ has become fossil fuels under the earth over a time. The fossil fuel is the result of sun’s energy or solar energy. We unearthed fossil fuels and burnt them to extract energy to run our power plants or run our cars. In fact fossil fuel is also a form of  ‘Biofuel’ and technically there is no difference between them except fossil fuel formation takes millions of years.Fossil fuel is nothing but a source of Hydrogen with carbon backbone.

All forms of alternative energy sources we are currently trying to develop such as PV solar, solar concentrators, solar thermal, geothermal energy, wind energy and bioenergy etc, originate from solar energy. The word alternative energy is a misnomer because all these energy are fundamentally solar energy in one form or another.

Solar energy is a radiation of Nuclear fusion  of Hydrogen taking place in the sun. Two Isotopes of Hydrogen called Deuterium (with one proton and one neutron) combine to form a Helium 3 atom and Neutron with release of large energy. Deuterium is non-radioactive and can be extracted from seawater. But this process could not be duplicated commercially for Electricity generation. It is the safest and cleanest form of energy.

In other words, all forms of energy including solar energy come from Hydrogen. That is why Hydrogen has become a potential fuel source in the future. However, developing a commercial technology for the production and usage of hydrogen at a rate cheaper than fossil fuels with zero greenhouse emission has been elusive so far. Generation of Hydrogen from water by Photo electrolysis using a direct sunlight using a Photo catalyst is a promising technology. But duplicating Nature to generate large amount of energy using tiny amount of Hydrogen atom seems to be a distance dream. Nature knows the best. We human beings can use small energy generation technologies such as solar and wind to meet our small energy needs. “There is enough to meets everybody’s need but not everybody’s greed”,Gandhi said.

Exponential growth of population and industries has forced us to look for large power generation and fuel usage at the cost of serious environmental degradation and future generations. Only smarter and cleaner technologies will help sustain the future. Politicians and policy makers  should understand various technologies and their implications than advocating short-sighted and popular energy policies.

Hydrogen has been accepted as a source of clean energy for many reasons. Hydrogen can eliminate anthropic Greenhouse Gas  into the atmosphere and stop global warming. It has high energy content than any other fossil fuels we are currently using, making it an efficient fuel. The combustion product of Hydrogen is only water which is   recyclable. Many people, Governments  and institutions around the world are trying develop  cheaper methods of generating Hydrogen from various sources both renewable as well as non-renewable. The non-renewable sources are supposed to facilitate a smooth transition from fossil fuel economy to Hydrogen economy.

However, all attempts to generate Hydrogen at a cost lower than the projected cost of $ 2.50 per kg by DOE has not been successful, even though many recent technologies are promising. Meanwhile massive investments are made on Renewable Energy including wind, solar and biological all over the world. Generating Hydrogen from water using Solid Polymer Membrane Electrolyzer is a known technology using renewable energy sources. One can easily deploy such systems for commercial applications even though it is now expensive.

Many people and institutions are also claiming ‘free energy’ sources with or without generating Hydrogen. In some cases researches are claiming an abnormal production of Hydrogen using ‘Cold plasma’ or ‘Plasma electrolysis’ of water, as much as 800% more than the theoretical values. Some companies claim low energy consumption using photo- catalyst to generate Hydrogen  using direct sunlight and water. Hydrogen generation using renewable sources is a distinct possibility to cut the cost of Hydrogen in the long run. However, the world is in hurry to develop a cheap and sustainable method of Hydrogen generation without any greenhouse gas emissions.

One US based company is claiming to have invented a new Hydrogen atom which has not been reported before in the literature. According to the inventor, this new atom of Hydrogen is called ‘Hydrino’.He has presented a detailed theory called ‘Grand Unified Theory’   that predicts catalysts that allow energy to be extracted from lower energy state of Hydrogen atom. They have demonstrated the process using a proto type in the laboratory and their claims have been validated by an independent Laboratory after conducting trial runs and analyzing the results using spectrum analysis and other techniques.

The process involves a generation of Hydrogen by using electrolysis of water. The resulting Hydrogen is then reacted with a proprietary solid catalyst developed by the company. According to the company,

“Since certain proprietary catalysts cause the hydrogen atoms to transition to lower-energy states by allowing their electrons to fall to smaller radii around the nucleus with a release of energy that is intermediate between chemical and nuclear energies, the primary application is as a new primary energy source. Specifically, energy is released as the electrons of hydrogen atoms are induced by a catalyst to transition to lower-energy levels (i.e. drop to lower base orbits around each atom’s nucleus). The lower-energy atomic hydrogen product called “hydrino” reacts with another reactant supplied to the reaction cell to form a hydride ion bound to the other reactant to constitute a novel proprietary compound. Alternatively, two hydrinos react to form a very stable hydrogen-type molecule called molecular hydrino. Thus, rather than pollutants, the byproducts may have significant advanced technology applications based on their stability characteristics. For example, hydrino hydride ions having extraordinary binding energies may stabilize a cation (positively charged ion of a battery) in an extraordinarily high-oxidation state as the basis of a high-voltage battery. Further, significant applications exist for the corresponding molecular hydrino wherein the excited vibration-rotational levels could be the basis of a UV laser that could significantly advance photolithography and line-of-sight telecommunications. A plasma-producing cell based on the extraordinarily energetic Process has also been developed that may have commercial applications in chemical plasma processing and as a light source.”

The company claims that an average generating capacity of a system will be 1000kw, with installed cost at $1000/kw with fuel cost at less than $0.001/kw with zero greenhouse emission.The solid catalyst is regenerated and recycled. The cost of Hydrogen from electrolysis becomes insignificant due to generation  of large excess thermal energy, to generate power.

The above claims are too attractive to ignore and it could be a game changer in the energy industry. The output energy is more than the theoretical values calculated,  thus violating the Law of Thermodynamics. This excess energy is attributed to the presence of ‘Hydrino’. However, one has to be open to new ideas because science is ever-changing and even well-established theories and concepts are challenged as Science evolves with new discoveries and inventions.

 

 

 

The sun is bright and warm and your roof top solar panels and solar heaters are working hard to generate power and hot water. But the rate of power generated is too small to use immediately. The hot water is not hot enough for your shower. Your 200 watt rooftop solar panel generates only 0.12 kwhrs after 5 hours of hard work. It does not meet your expectations. You expect 200 watts solar panel to generate about 1000 watt.hrs (1kwhr) in 5 hours. It is not happening. You don’t think renewable energy can meet your electricity demand.

There is a strong wind in the island and the wind turbines are rotating faster than usual but there are hardly any people living there. Wind turbine generates good power when the wind velocity is above certain level. But the electricity generated by the wind has no immediate takers.

There is a good rain this year and the dams are overflowing and the Hydro is generating surplus power but not many people are living near the catchment area. The power has to be transmitted hundred of kilometers to the nearby town through a sub-station. When the dams are dry there is hardly any power generation and power supply is rationed to the town.

When there is a demand for power Mother Nature does not offer the resources for power generation. When Mother Nature offers the resource we do not need power. This anomalous situation is the single largest obstacle that is undermining the potential of renewable energy. Of course, the high initial cost and half-hearted approach by Governments to offer subsidies or grants for renewable energy are other factors that add to the anomaly.

The only option to get over this situation is to store the energy 24×7 when it is generated and use them when we need them. It requires good storage technology, automation and information technology that can communicate with Natures energy resources and harness them, store them and deploy them judiciously and intelligently to meet our demands.

Current battery technology cannot be a long-term sustainable solution; it is expensive, requires constant maintenance and replacement, which adds to the expensive initial investment on renewable systems. The best option is to generate Hydrogen on-site when sunshine’s or wind blows and store them under pressure that can be used as and when we need electricity using Fuel cell. It is easier to handle gas than stored electricity in batteries. Batteries are very heavy, has a limited life cycle and poses health hazard and not suitable for large-scale power storage and not sustainable in the long run.

An Electrolyzer can generate Hydrogen from water on site when a sun or wind energy available and they can work from 10% to 100% capacity depending upon the availability of renewable resources. The surplus power from Hydro can be converted into Hydrogen and stored. With so much advancement in information and communication technology, harnessing nature’s energy, storing them and deploying them in a timely manner is not major issue. Hydrogen can bridge the gap between Nature resource availability and human demand. This is what science is all about. We developed science by learning from Nature or duplicating Nature and Renewable energy is nothing different.

There is a general opinion that Hydrogen is now very expensive compared to Gasoline and Diesel. It depends on how you generate Hydrogen. We have used Gasoline and Diesel for several decades and real cost of crude oil is much lower than what we are paying for Gasoline and diesel at the service stations. Crude oil is formed naturally and all the cost involved is for pumping, transportation and refining. The cost of energy spent on transportation and refining is also comparatively low. It is the geopolitical situation in the world, supply demand gap, Government taxes and levies, inventory levels, financial market and distributors play a key role in fixing the price of these fuels.

Hydrogen can be generated from tap water without involving fossil fuels at all. But Governments are spending on research and development of Hydrogen generation using fossil fuels such as natural gas and coal. It is understandable that these sources are suitable for bulk production of Hydrogen on an industrial scale. We will also be able to use existing fossil fuel infrastructure to the most extent. But the flip side of this approach is Hydrogen generated by this route is still not pure enough to meet Fuel cell requirements. This Hydrogen may be suitable for Hydrogen combustion engines. Why they are not suitable? For example, Hydrogen is generated from natural gas by steam reforming,Syngas is generated as an intermediary product which is a mixture of Hydrogen and Carbon monoxide; but also other impurities present in natural gas such Sulfur,Phosphorus and Mercaptans etc.Natural gas has to be purified to remove all these impurities before it can be subject to steam reformation. In spite of an elaborate purification methods adopted, Fuel cell suppliers are reluctant to guarantee the life of their Fuelcell.The Fuel cell uses expensive Platinum as a catalyst which can be readily poisoned by the presence of impurities in Hydrogen, produced from natural gas. This is one of the main reasons why Hydrogen becomes expensive by this route. Industries can pay high cost for this Hydrogen, but ordinary citizens cannot afford to pay.

Hydrogen can be generated directly from tap water by simply electrolyzing it using a Direct current such as solar and wind. If we use grid power, it requires about 68kwhrs of electricity, costing about $3.40 per Kg of Hydrogen. Assuming Hydrogen will cost about $5 per kg after compression and storage, it is still worth the cost. This Hydrogen will give a mileage of 73.4 miles/kg using Fuel cell car. This is equal to 3.67 Gallons of gasoline costing about $13.76, at the rate of $3.75 per gallon. It is very clear that hydrogen is cheaper than gasoline or diesel. At the current price,Gasoline  costs 275% more than Hydrogen gas.

By converting existing coal and oil based power plants into IGCC, Integrated Gasification and Combined Cycle plants, Government can cut the current emission levels of greenhouse gases, and at the same time supply electricity at the prevailing rates. We do not have to import oil or gas. Government should fund conversion of coal and oil-fired power plants into IGCC plants and create Hydrogen infrastructure, by producing more Hydrogen Fuel cell cars and Hydrogen service stations. By adopting this policy, US Government can bring down the prices of crude oil in the international market which will help cut the prices of all other petrochemical products like fertilizers, plastics, drugs and cosmetics. The crux of the issue is to divert petroleum products from fuel use to other uses. At the same time Governments can reduce their greenhouse emissions to the level demanded by scientists. By reducing the cost of solar panels to less than $.100 per watt, Renewable Hydrogen will become a commercial reality and that will be the end of fossil fuels.

Dirty coal is still a popular choice for power generation around the world, irrespective of the status of the country, whether industrially advanced or backward. The abundant availability and cheap cost, makes coal more attractive from investor’s point of view; they care less for the environment, while Governments turn a blind eye to all the emissions and pollutions. It is a question of survival for millions of people who work in coal mines and industries. It is one of the toughest challenges many Government are facing. Take for example India; about 65% of power generation still comes from coal. The import of coal increases year after year and there is no immediate solution in sight. Indian coal is a low-grade coal with very high ash content. Each coal-fired power plant generates a huge amount of fly ash and they stockpile them; supposed to be used in the production of Portland cement. It is a big business.

China and Indonesia too uses coal as a major fuel for power generation. But they have come out with an innovative and pragmatic method of using coal. They use coal-water-slurry (CWS), a finely pulverized high  grade coal (calorific value 5100-6100Kcal/kg) in water. They use some chemical additives that make the slurry a homogeneous fluid, similar to a Hydrocarbon such as Heavy fuel oil (HFO).The advantage with CWS is it can be easily pumped and injected into a furnace or boiler using ceramic nozzles, obviously to avoid erosion due the abrasive nature of coal, just like firing diesel or heavy oil. According to the literature, 1.8 -2.2 tons of CWS is equal to 1 ton of Heavy fuel oil (HFO) and it costs about the same. It cost only US$ 62 million to retrofit an existing coal-fired power plant with CWS system and the yearly savings are estimated at US$ 41 mil per year, an attractive rerun on investment.

The beautiful aspect of this method is it generates Hydrogen rich Syngas according to the following chemical reaction.

2C + O2+2 H2O ——– 2H2+2 CO2 when the mixture is subject to Gasification instead of mere Combustion.

The combustion efficiency is about 96-99% and the boiler efficiency of more than 90%. It generates less Sulfur dioxide and Nitrogen oxide emissions and good for the environment compared to conventional coal-fired power plants. It is a good technology that needs the attention of Governments especially India, China and Indonesisa.Even coal rich countries like US, Australia should focus on this technology apart from their persuasion such as carbon sequestration.

In fact this will open new avenues for India and China to switch over to Hydrogen economy without making large investments. The coal water slurry fluid has a property similar to a Hydrocarbon as shown below.

Density 65-70% ,Viscosity -1000Cp, Size d< 50 microns, Ash content <7, Sulfur<0.5%. It is easy to handle a liquid than solid coal. pulverized coal is pneumatically conveyed and fired in rotary cement kilns for so many years. There is nothing new about it. Similarly coal water slurry can be a game changer for  the power industry,  if it is combined with Gasification and combined cycle;  it will lead  into Hydrogen based power generation industry using Fuel cell such as Molten Carbonate Fuel cell (MCFC). I believe there is a clear opportunity for the Governments and private industries  to seriously look into CWS technology which I believe, is a ‘precursor’ for Hydrogen economy of the future.

%d bloggers like this: