Skip navigation

Tag Archives: Greenhouse gas emission

Jet fuel from seawatersynthetic  Crude oil -Pilot plantFT recator for syntehtic crudeRecent news from USA has got the attention of many people around the world. “Scientists with the United States Navy say they have successfully developed a way to convert seawater into jet fuel, calling it a potentially revolutionary advancement. Researchers at the Naval Research Laboratory (NRL) developed technology to extract carbon dioxide from seawater while simultaneously producing hydrogen, and then converted the gasses into hydrocarbon liquid fuel. The system could potentially shave hours off the at-sea refueling process and eliminate time spent away from missions.” They estimate the cost of the jet fuel will be anywhere between $3 and $6 per gallon.  It may not be able to compete with traditional petroleum sources due to high energy requirement. However, the main attraction of this process is to extract Carbon dioxide absorbed by the ocean to avoid acidification and to mitigate climate change while making petrol as a Carbon neutral fuel. Ocean has become a rich source of Carbon (Carbon sink) absorbing excess atmospheric Carbon dioxide caused by human beings. Generating Carbon neutral fuel such as SNG (synthetic natural gas), diesel and petrol from air and sea water will be the fastest way to reduce Carbon from the atmosphere. Probably Governments, business and industries will embarrass this concept much quicker than any other mitigating methods simply because it is a revenue generating proposition with a potential to earn carbon credit.

Carbon-neutral fuel is a synthetic fuel (including methanegasolinediesel fueljet fuel or ammonia) that is produced using  carbon dioxide recycled from power plant flue exhaust gas or derived from carbonic acid in seawater  and renewable Hydrogen. Such fuels are potentially carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases.  It is a Carbon capture and recycling (CCR) process.

“To the extent that carbon-neutral fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation. Such power to gas carbon-neutral and carbon-negative fuels can be produced by the electrolysis of water to make hydrogen used in the Sabatier reaction to produce methane which may then be stored to be burned later in power plants as synthetic natural gas, transported by pipeline, truck, or tanker ship, or be used in gas to liquids processes such as the Fischer–Tropsch  (FT) process to make traditional fuels for transportation or heating.

Carbon-neutral fuels are used in Germany and Iceland for distributed storage of renewable energy, minimizing problems of wind and solar intermittency, and enabling transmission of wind, water, and solar power through existing natural gas pipelines. Such renewable fuels could alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles.A 250 kilowatt synthetic methane plant has been built in Germany and it is being scaled up to 10 megawatts.” (Wikipedia).

We have been writing about renewable hydrogen (RH) for the past couple of years and often use the phrase, “Water and energy are two sides of the same coin” because we can mitigate climate change using renewable hydrogen (RH) even while the fossil fuel economy can carry on as usual.

By generating Carbon neutral fuels using excess Carbon from air and sea and hydrogen from water (even seawater) using renewable energy sources, the problem of global warming and climate change can be solved because we will not be adding any further Carbon into the atmosphere than what it is today!

Instead of generating solar and wind power and storing them in batteries it will be prudent to generate Carbon neutral fuel from CO2 already available in the system and use them as usual. Meanwhile Hydrogen based power generation and transportation   can be developed as a long term solution.

Fossil-fired power plants produce CO2 (Carbon dioxide) which could be captured and converted to CO (Carbon monoxide) for production of synthetic fuels. CO2 can be converted to CO by the Reverse Water Gas Shift Reaction, CO2 + H2–> CO + H2O. CO could then be used in the F-T reaction with additional hydrogen from water-splitting to produce synthetic fuel such as diesel and petrol as carbon neutral fuels.

 Synthetic fuel by CO2 Capture + H2 from Water-splitting:

Reverse Water Gas Shift                          CO2 + H2 —->  CO + H2O

F-T reaction                                             CO + 2H2 —-> CH2 + H2O


Water-splitting                              3H2O + Energy –> 3H2 + 3/2O2

Net reaction                         CO2 + H2O + Energy —>CH2 + 3/2O2


In this case, no coal is needed at all, and CO2 is consumed rather than produced. The excess O2 would be used in the fossil power plant that provides the CO2, simplifying CO2 capture. There is currently considerable effort underway on developing CO2 capture systems for new and extant power plants. The increasing concern with Global Climate Change suggests that there is a reasonable likelihood of such plants operating in the timeframe associated with synthetic fuel from carbon dioxide. Such a synergistic system has the potential to significantly reduce our current emissions of CO2 since the carbon in the coal is used once for power production and then again for liquid hydrocarbon fuel synthesis.

Synthetic fuel plant with capacities as low as 1000 barrels/day are commercially feasible using specially designed micro-reactors as shown in the attached photograph (ref: Velocys). Utilizing carbon dioxide from sea and air is the smartest way to mitigate climate change while maintaining fossil fuel based power plants and automobiles without any change or modifications. The same technique can also be applied for biomass gasification plants.


The climate is changing with increasing global warming caused by man-made Carbon emission. The economic impact of global warming can no longer be ignored by Governments around the world because it is impacting their budget bottom lines. Weather is becoming unpredictable. Even if Meteorological department predicts a disaster 24 hrs in advance, there is nothing Governments can do to prevent human and economic losses within a short span of time but evacuate people to safety leaving behind all their properties. Governments are forced to allocate funds for disaster management every year caused by severe draughts, unprecedented snow falls, and coastal erosion by rising sea levels, flash flooding, inundation and power black outs. We often hear people saying,” we were completely taken by surprise by this event and we have never seen anything like this in the last 50 years” after every naturals disasters explaining the nature and scale of disasters. Nature is forcing Governments to allocate more funds for disaster managements and such allocations have reached unprecedented levels. The cost of natural disasters around the world in 2011 was estimated at $ 400 billion and in 2012 it was estimated at $160 billion. The only way to fund these disasters is to tax Carbon pollution which causes global warming. Countries should take long-term decisions that will save their current and future generations to come.  They should understand how Carbon is emitted and what the best way to curb such emissions is. It is a global issue and its requires a collective solution.  There is no use of pricing Carbon when economic recession can jeopardize the pricing mechanism? Global warming is a moral and social issue and not just an economic issue.

Developed countries have emitted bulk of the Carbon since industrial revolution while developing countries such as India and China were emitting less carbon in spite of their vast population due to their lowest per capita consumption. But that trend has now changed with rapid industrialization and economic growth of India and China and other developing economies. Australia is still a leading emitter of Carbon in the world in spite of their low population because of their high energy consumption, availability of cheap and high quality Coal and increasing mining, industrial and agricultural activities. That is why Australia is one of the first few countries who introduced Carbon tax while rest of the countries is still debating about it. Now it is clear that Carbon emission is directly proportional to industrial, economic and population growth of a country and it can be easily quantified based on the growth rate of each country. It is time countries agree to cut their Carbon emissions to sustainable levels with a realistic Carbon pricing mechanism and sign a world-wide treaty through UN.

“THE EUROPEAN UNION carbon emissions trading scheme—the biggest in the world and the heart of Europe’s climate- change program—is in dire straits. The scheme’s carbon price has collapsed. The primary reason: The economic recession has suppressed manufacturing, thereby reducing emissions and creating a huge over- supply of carbon emissions allowances. Carbon trading is a market approach to reducing greenhouse gas emissions in which each facility involved is given an emissions cap for the year, and each year that cap is reduced. A firm must record and report its facilities’ emissions and must obtain allowances for its total emissions. An allowance permits a facility to emit 1 metric ton of carbon dioxide or its carbon equal; some allowances are given for free by the government, others can be bought at auction or from other firms. If a facility exceeds its cap, the company operating it has options: It can cut emissions, buy allowances from other companies, or get allowance offsets by reducing emissions at another pollution source. The cost of an allowance is referred to as the car-bon price and is driven by market conditions such as supply and demand. If the low-carbon price continues, the region’s ability to meet long-term reduction targets for greenhouse gas emissions will be severely hampered because the trading scheme will fail to provide money for clean-tech programs and incentive for manfacturers to adopt cleaner technologies. The trading scheme is a key component of the EU’s climate-change strategy because about 40% of all greenhouse gases emit-ted in the region fall under EU’s control. The mandatory scheme applies to 11,000 industrial installations, including power plants and major chemical facilities, across all 27 member states, as well as in Croatia, Iceland, Liechtenstein, and Norway. The aviation sector has been included in the scheme, but its active participation has been deferred to allow for an international agreement on aviation emissions, which is expected to be concluded in the fall. The goal of the European Commission, the EU’s administrative body and the architect of the emissions trading scheme, is to reduce all greenhouse gas emissions by 20% from 1990 levels by 2020. To contribute toward this goal, the trading scheme has targeted a 21% cut in the emissions of participating sectors by 2020 from a 2005 baseline. In recent weeks, however, the EU carbon price dropped to a new low of $5.20 for each metric ton allowance of CO2, down from a high of $23 in 2011. This is despite an annual reduction of the EU emissions cap of 1.74% through 2020 and the introduction on Jan. 1 of a new phase of the scheme requiring companies to purchase allowances. AT ITS CURRENT carbon price, the EU emission scheme’s role in encouraging chemical firms to ditch fossil fuels and adopt greener technologies “is meaningless,” says André Veneman, director of sustainability at AkzoNobel. Many of the industry’s investments in low-carbon technologies that are marginally financially viable also will likely be delayed, he says. Without a strong carbon price, the underlying push to clean-tech in the EU will come only from the price of oil, Veneman adds. Veneman and other experts say that a carbon price of between $68 and $135 is required if industry as a whole is to be forced to shift onto a new low-carbon footing. Yvo de Boer, special global adviser for climate change and sustainability for KPMG—an audit, tax, and advisory firm—and form EUROPEAN SCHEME IS IN FREE FALL Record-low CARBON PRICE threatens to derail transition away from fossil fuels and ability to meet climate-change targets.” Source: EUROPEAN SCHEME IS IN FREE FALL Record-low CARBON PRICE threatens to derail transition away from fossil fuels and ability to meet climate-change targets ALEX SCOTT, C&EN LONDO

The burden of Carbon tax should be borne by both power generators as well as consumers. Even if the Carbon tax is imposed on emitters it will eventually be passed on to consumers. Either way the cost of energy will increase steeply or there is no way to avoid such escalation if we want to keep up our power consumption levels or our current life style. In other words people will have to pay penalty for polluting the air either by generating or consuming power that causes Carbon pollution. All developed countries that have polluted the atmosphere with Carbon emission should be taxed retrospectively from the time of industrial revolution so that emerging countries need not bear the full cost of global warming. Such a fund should be used for developing renewable and clean energy technologies or to purchase Carbon allowances. Current mechanism of Carbon pricing does not penalize countries who caused the global warming in the first place for hundreds of years but penalizes only countries who now accelerate the rate of Carbon emission. Such an approach is a gross injustice on the emerging economies and not at all pragmatic. Most of the developed countries are currently facing economic recession resulting in plummeted Carbon price. This will only encourage existing Carbon emitters to emit Carbon cheaply and penalize Renewable energy and clean energy technologies with higher tariffs and drive them to extinction. In spite of Carbon level in the atmosphere exceeding 400 ppm according to the latest report, the world is helpless to cut the Carbon emission anytime sooner making our planet vulnerable to catastrophic natural disasters. Countries that are reluctant to pay Carbon tax will pay for Natural disasters which may be many times costlier than Carbon tax. Countries like US, European Union, Japan, Australia the largest power consumers and countries like Saudi Arabia, Russia, Venezuela, Iran, Iraq, Libya the largest oil producers should bear the cost of Carbon pollution that caused the globe to warm sine industrial revolution. Such a fund should be used in developing innovative Renewable energy and clean energy technologies of the future. More than anything else the rich and powerful countries should declare global warming as a moral issue of the twenty-first century and take some bold and hard economic decisions to save the planet earth..Allowance overloadCarbon pricing downward trendcost of Natural disatersEU carbon trading


%d bloggers like this: