Skip navigation

Tag Archives: Desalination

There is a great deal of misconception about desalination of seawater and the word ‘desalination’ is taken literally as a method of separating  fresh water from seawater but not the separation of salt from seawater. The main focus here is only about recovery of fresh water from seawater or from any saline water sources but not salt. In fact separation of salt from seawater is also known as desalination or desalting. The reason for this misconception is because fresh drinking water is in demand and people are concerned only with fresh water and not the salt. There is a huge demand for fresh drinking water all over the world. Increasing population, large scale usage of fresh water by industries, pollution of fresh water by domestic and industrial effluents, failure of monsoon or seasonal rains due to climate change are some of the factors that contributes to water shortage. There is also a demand for water by agriculture industry both in terms of quality and quantity. Bulk of the ground water is used as a main source of fresh water by agriculture industries in many countries.

But sea water also contains number of minerals or salts which have greater economic and commercial value. In terms of quantity their presence is small, only 3.5% and the rest 96.5% is fresh water. For example Chemical industries such as Caustic soda and Soda ash plants use salt as their raw material. But they also use de-ionized water to dissolve salt to produce brine which is their feed stock.

Therefore Chemical plants are the largest users of seawater in terms of salt as well as fresh water. Power plants mainly located on seashore also use large quantity of de-ionized or desalinated water for boilers and for cooling towers.

Sea is now becoming a great source of fresh water as the inland water supply is becoming scarcer due to dwindling water table by drought or flooding by too much rains, pollution by industries etc. In earlier days seawater was the only source of common salt known as Sodium chloride produced by solar evaporation. Bulk of the salt is till used by this method. Therefore it is logical to locate a chemical plant and a power plant side by side so that seawater can be utilized efficiently.

CEWT (Australian company) has developed a new desalination technology called ‘CAPZ desalination technology’ that can generate fresh water as well as Sodium chloride brine simultaneously which is suitable for Caustic soda/Soda ash production. They can integrate such a facility with a skid mounted Chlorine plant of smaller capacities. This plant can generate large volume of drinking water (WHO standard) as a by-product that can be supplied to municipalities and agriculture industries.

Locating large scale solar salt pans near such a facility will be a problem because it requires a huge area of arid land with good wind velocity and it takes nearly a year to harvest the salt.

Using CAPZ desalination technology one can generate saturated Sodium chloride brine of 315 gpl concentration as well as fresh drinking water directly from seawater. The brine is purified to meet the specifications required by membrane Electrolysis for the production of Caustic Soda. The same brine can also be used for the production of Soda ash using Solvay process.

It is no longer necessary to produce brine from solar salt. Solar salt requires vast area of arid land with good wind velocity and least rain fall and large manual labour force to work under harsh conditions; it is a very slow process and takes almost a year to harvest the salt, which is full of impurities and requires elaborate purification process during the production of Caustic Soda. Such purification process generates huge volume of solid waste for disposal. Chlor-alkali industry is one of the most polluting industries in the world. In fact these impurities can be converted into more value added products such as recovery of Magnesium metal or recovery of Potassium salts. CAPZ technology is developing a ZLD (zero liquid discharge) desalination process where the effluent containing the above impurities such as Calcium, Magnesium and Sulphates are converted into value added products. By recovering more such salts from seawater one can recover additional fresh water. Therefore desalination of sea water is now emerging as an integral part of Chlor-alkali industry. By such integration Chlor-alkali can become a major player is meeting fresh drinking water of a nation.

skid mounted Chlorine plantSkid mounted Cl2 planElectrolysis plant by Thyssen krupBy careful integration and co-location of a desalination plant, Caustic soda plant, Food and pharmaceutical grade salt plant and a power plant  on a sea shore will be a win situation for everybody involved.

Let us take a specific case study of setting up a Caustic soda plant, a captive power plant and a desalination facility.

A typical skid mounted Chlorine plant will have the following configuration:

Capacity of Caustic Soda: 50.7 Mt/day (100% basis)

Capacity of Chlorine        : 45.00 Mt/day (100% basis)

Hydrogen production        : 14,800m3/day (100% basis)

A typical usage of Vacuum salt for such skid mounted Chlorine plant will be about 76.50 Mt/day with a power consumption of 2.29 Mwhr/Mt of NaOH (100%).

A captive power plant of capacity 200Mw will be able to supply necessary power for both Desalination facility as well as Caustic soda plant.

The CAPZ desalination facility can supply a saturated sodium chloride brine (315gpl concentration) 245 Mt/day and 9122 m3/day of fresh drinking water from the desalination plant. This water can be used for boiler feed in the power plant. Surplus water can be supplied as drinking water meeting WHO specifications.

The Hydrogen gas the by-product from caustic soda plant with capacity of 14,800 m3/day can be used to generate clean power using a Fuel cell. The power generated from Fuel cell will be about 20 Mwhr/day that can be supplemented for the Caustic soda production thereby reducing the power consumption from 2.29Mwhr to 1.46 Mwhr/Mt of NaOH (100%)

By careful integration of a large (ZLD) desalination facility with caustic soda plant and power plant it will be possible in future to generate a clean energy using Hydrogen, a by-product of Caustic soda plant and solar thermal plant to produce chemicals in a clean and environmentally sustainable manner.

For further information on CAPZ technology, please contact ahilan@clean-energy-water-tech.com.

 

 

 

Sustainability can be defined as the ability to meet present needs without disturbing Nature’s equilibrium by a holistic approach while not compromising the ability of the future generation to continue to meet their needs. Holistic is “Characterized by the belief that the parts of something are intimately interconnected and explicable only by reference to the whole” (Wikipedia). Mathematically and scientifically any exponential growth or consumption will not be sustainable and such growth will eventually be curtailed by forces of Nature. Unfortunately current models of sustainability do not take a holistic approach but focus only on a continuous growth or expansion to meet the demands of the growing human population thus disturbing the Nature’s equilibrium. The holistic approach is essential because our world is interconnected and any isolated growth or development in one part of the world will affect the other part of the world. Such a growth is counter-productive to human civilization as a whole. At the same time Nature’s equilibrium is critical for the survival of humanity and science should take into account this critical issue while developing solutions to problems. Otherwise such a solution will not be sustainable in the long run.

Nature maintains a perfect equilibrium (dynamic equilibrium) while maintaining reversibility. Both are intricately linked. If the equilibrium is not maintained then it becomes an irreversible process and the entropy of such a system will only increase according to the second law of thermodynamics. The order will become disorder or lead to chaos. Moreover any human interference to nature’s irreversibility and equilibrium by human beings will need energy. Any energy generation process within the system will not be holistic and therefore will not be sustainable.

For example, reverse osmosis (RO) is a major industrial process now used to desalinate sea water/brackish water to potable water. This process is reversing the Nature’s osmotic process by applying a counter pressure over and above the osmotic pressure of the saline water using high pressure pump. This requires energy in the form of electrical energy or thermal energy in the case of distillation. When such energy is generated by burning fossil fuel then the entropy increases because combustion of fossil fuel is an irreversible process. It is clearly not sustainable.

Energy is directly connected with economic growth of the world, but Governments and industries failed to adopt a holistic approach while generating energy by simply focusing only on economic growth. The fossil fuel power generation has resulted in the accumulation of GHG in the atmosphere and in the ocean changing the climate. Power generation by nuclear plant (Fukushima) has spilled radiation into the ocean and has crossed the Pacific Ocean to shores of North America. These are irreversible changes. The human and economic costs from such pollution will easily dwarf the ‘the economic growth’ of the world. It is not holistic because the emissions caused by one country affects the whole world; then it becomes the right of an individual to object to such pollution and it is the obligation of the Governments, United Nations and the industries to protect people from such pollution. Right now all these agencies are helplessly watching the deteriorating situation because they do not have the solution or means to reverse the situation whether it is an advanced country or a poor country; we always measure growth only by income and not by the quality of air we breathe in or water we drink or the environment we live in.

The demand for energy and water are constantly increasing all over the world; and we are trying to meet these demands by expanding existing power plants or by setting up new plants. When we generate power using fossil fuel the heat energy is converted into electrical energy and the products of combustion are let out into the atmosphere in the form of CO2 and Oxides of Nitrogen. It is an irreversible process and we cannot recover back the fossil fuel already burnt. Similarly the electricity generated once used to do some useful work such as lighting or running a motor etc cannot be recovered back.  The process of electricity generation as well as usage of electricity is irreversible. Similarly when it rains the water percolates into the ground dissolving all the minerals, sometimes excessively in some places making it unsuitable to drink or irrigate. This process can be reversed but it again requires energy.

Both the above processes are irreversible and thermodynamically they will increase the entropy of the system. Any energy generation process will have cost implications and therefore irreversibility and entropy are directly linked with economics. Fortunately renewable energy sources offer hope to humanity. Even though the entropy is increased due to its irreversible nature there is no depletion of energy (sun shines everyday). Only Nature can come to human rescue to our sustainability. Science and powerful economies cannot guarantee sustainability irrespective of the size of the budget. There is a myth that billions of dollars can reverse the irreversibility with no consequences.

It raises question on the very basis of science because science depends on “observation and reproducibility” as we know. The biggest question is: “Who is the Observer and what is observed”? When sages of the East such as Ramana Maharishi raises this question, the Science has clearly no answer and the world is blindly and inevitably following the West to the point of no return.

 

.

 

 

Seawater desalination is a technology that provides drinking water for millions of people around the world. With increasing industrialization and water usage and lack of recycling or reuse, the demand for fresh water is increasing at the fastest rate. Industries such as power plants use bulk of water for cooling purpose and chemical industries use water for their processing. Agriculture is also a major user of water and   countries like India exploit ground water for this purpose. To supplement fresh water, Governments and industries in many parts of the world are now turning to desalinated seawater as a potential source of fresh water. However, desalination of seawater to generate fresh water is an expensive option, due to its large energy usage. However, due to frequent failure of monsoon rains and uncertainties and changing weather pattern due to global warming, seawater desalination is becoming a potential source of fresh water, despite its cost and environmental issues.

Seawater desalination technology has not undergone any major changes during the past three decades. Reverse osmosis is currently the most sought after technology for desalination due to increasing efficiencies of the membranes and energy-saving devices. In spite of all these improvements the biggest problem with desalination technologies is still the rate of recovery of fresh water. The best recovery in SWRO plants is about 50% of the input water. Higher recoveries create other problems such as scaling, higher energy requirements and O&M issues and many suppliers would like to restrict the recoveries to 35%, especially when they have to guarantee the life of membranes and the plant.

Seawater is nothing but fresh water with large quantities of dissolved salts. The concentration of total dissolved salts in seawater is about 35,000mgs/lit. Chemical industries such as Caustic soda and Soda ash plants use salt as the basic raw material. Salt is the backbone of chemical industries and number of downstream chemicals are manufactured from salt. Seawater is the major source of salt and most of these chemical industries make their own salt using solar evaporation of seawater using traditional methods with salt pans. Large area of land is required for this purpose and solar evaporation is a slow process and it takes months together to convert seawater into salt. It is also labor intensive under harsh conditions.

The author of this article has developed an innovative technology to generate fresh water as well as salt brine suitable for Caustic soda and Soda ash production. By using this novel process, one is able to recover almost 70% fresh water against only 40% fresh water recovered using conventional SWRO process, and also recover about 7- 9% saturated brine simultaneously. Chemical industries currently producing salt using solar evaporation are unable to meet their demand or expand their production due to lack of salt. The price of salt is steadily increasing due to supply demand gap and also due to uncertainties in weather pattern due to global warming. This result in increased cost of production and many small and medium producers of these chemicals are unable to compete with large industries. Moreover, countries like Australia who have vast arid land can produce large quantities of salt   with mechanized process  competitively; Australia is currently exporting salt to countries like Japan, while countries like India and China are unable to compete in the international market with their age-old salt pans using  manual labor. In solar evaporation the water is simply evaporated.

Currently these chemical industries use the solar salt which has a number of impurities, and it requires an elaborate purification process. Moreover the salt can be used as a raw material only in the form of saturated brine without any impurities. Any impurity is detrimental to the Electrolytic process where the salt brine is converted into Caustic soda and Soda ash. Chemical industries use deionized water to dissolve solar salt to make saturated brine and then purify them using number of chemicals before it can be used as a raw material for the production of Caustic soda or Soda ash. The cost of such purified brine is many times costlier than the raw salt. This in turn increase the cost of chemicals produced.

In this new process, seawater is pumped into the system where it is separated into 70% fresh water meeting WHO specifications for drinking purpose, and 7-10% saturated pure brine suitable for production of caustic soda and Soda ash. These chemical industries also use large quantities of process water for various purposes and they can use the above 70% water in their process. Only 15-20% of unutilized seawater is discharged back into the sea in this process, compared to 65% toxic discharge from convention desalination plants. This new technology is efficient and environmentally friendly and generates value added brine as a by-product. It is a win situation for the industries and the environment. The technology has been recently patented and is available for licensing on a non-exclusive or exclusive basis. The advantage of this technology is any Caustic soda or Soda ash plant located near the seashore can produce their salt brine directly from seawater without stock piling solar salt for months together or transporting over a long distance or importing from overseas.

Government and industries can join together to set up such plants where Governments can buy water for distribution and industries can use salt brine as raw material for their chemical production. Setting up a desalination plants only for supplying drinking water to the public is not a smart way to cut the cost of drinking water. For example, the Victorian Government in Australia has set up a large desalination plant to supply drinking water. This plant was set up by a foreign company on BOOT (build, own and operate basis) and water is sold to the Government on ‘take or pay’ basis. Currently the water storage level at catchment area is nearly 80% of its capacity and the Government is unlikely to use desalinated water for some years to come. However, the Government is legally bound by a contract to buy water or pay the contracted value, even if Government does not need water. Such contracts can be avoided in the future by Governments by joining with industries who require salt brine 24×7  throughout the year, thus mitigating the risk involved by  expensive legal contracts.

 

We have used Hydrocarbon as the source of fuel for our power generation and transportation since industrial revolution. It has resulted in increasing level of man-made Carbon into the atmosphere; and according to the scientists, the level of carbon has reached an unsustainable level and any further emission into the atmosphere will bring catastrophic consequences by way of climate change. We have already saw many natural disasters in a short of span of time. Though there is no direct link established between carbon level in the atmosphere and the global warming, there is certainly enough evidence towards increase in the frequency of natural disasters and increase in the global and ocean temeperatures.We have also seen that Hydrogen is a potential candidate as a source of future energy that can effectively substitute hydrocarbons such as Naphtha or Gasoline. However, hydrogen generation from water using electrolysis is energy intensive and the source of such energy can come only from a renewable source such as solar and wind. Another issue with electrolysis of water for Hydrogen generation is the quality of water used. The quality of water used for electrolysis is high, meeting ASTM Type I Deionized Water preferred, < 0.1 micro Siemen/cm (> 10 megOhm-cm).

A unique desalination technology has been developed by an Australian company to generate on site Hydrogen directly from seawater. In conventional seawater desalination technology using reverse osmosis process only 30-40% of fresh water is recovered as potable water with TDS less than 500 ppm as per WHO standard. The balance highly saline concentrate with TDS above 65,000 ppm is discharged back into the sea which is detrimental to the ocean’s marine life. More and more sweater desalination plants are set up all over the world to mitigate drinking water shortage. This conventional desalination is not only highly inefficient but also causes enormous damage to the marine environment.

The technology developed by the above company will be able to recover almost 75% of fresh water from seawater and also able to convert the concentrate into Caustic soda lye with Hydrogen and Chlorine as by-products by electrolysis. The discharge into the sea is drastically reduced to less than 20% with no toxic chemicals. This technology has a potential to revolutionize the salt and caustic soda industries in the future. Caustic soda is a key raw material for a number of chemical industries including PVC.Conventionally, Caustic soda plants all over the world depends on solar salt for their production of Caustic soda.Hydrogne and Chlorine are by-products.Chlrine is used for the production of PVC (poly vinyl chloride) and Hydrogen is used as a fuel.

In the newly developed technology, the seawater is not only purified from other contaminants such as Calcium, Magnesium and Sulfate ions present in the seawater but also concentrate the seawater almost to a saturation point so that it can be readily used to generate Hydrogen on site. The process is very efficient and commercially attractive because it can recover four valuable products namely, drinking water, Caustic soda lye, Chlorine and Hydrogen. The generated Hydrogen can be used directly in a Fuel cell to generate power to run the electrolysis. This process is very ideal for Caustic soda plants that are now located on seashore. This process can solve drinking water problems around the world because potable water becomes an industrial product. The concentrated seawater can also be converted in a salt by crystallization for food and pharmaceutical applications. There is a growing gap between supply and demand of salt production and most of the chemical industries are depending upon the salt from solar pans.

Another potential advantage with this technology is to use wind power to desalinate the water. Both wind power and Hydrogen will form a clean energy mix. It is a win situation for both water industry and the environment as well as for the salt and chemical industries. In conventional salt production, thousands of hectares of land are used to produce few hundred tons of low quality salt with a year-long production schedule. There is a mis match between the demand for salt by large Caustic soda plants and supply from primitive methods of solar production by solar evaporation contaminating cultivable lands.

The above case is an example of how clean energy technologies can change water, salt and chemical industries and also generate clean power economically, competing with centralized power plants fuelled with hydrocarbons. Innovative technologies can solve problems of water shortage, greenhouse gases, global warming, and environmental pollution not only economically but also environmental friendly way. Industries involved in seawater desalination, salt production, chemical industries such as Caustic soda, Soda ash and PVC interested to learn more on this new technology can write directly to this blog address for further information.

A safe and clean water supply is becoming a scarce commodity in many parts of the world. With growing   population and rapid industrialization, the demand for water has increased dramatically. This in turns pushes the demand for energy and fossil fuels resulting in further increase in global warming. According to WHO (World Health organization) specifications, a clean and safe water should be free from pathogenic organism such as bacteria and virus, and also the TDS (Total dissolved solids) levels should be below 500ppm (parts per million). Unfortunately such quality water is not readily available from surface or ground water. The water stored in catchment area for supply of drinking water to cities requires certain chemical and biological treatments before it can meet WHO specification.

In many smaller cities especially in developing countries such treated drinking water is not available. NASA’s Gravity Recovery and Climate Experiment Satellite or GRACE orbiting earth in tandem, two satellites are able to measure the water storage on ground and below across the world. The NASA data shows that most of area in Northern India will be facing a severe shortage of water in the near future because farmers are pumping ground water   at an alarming rate. The ground water is getting depleted faster than it is being replenished. The water table has gone deeper and deeper and many of the pumps they used five to ten years ago cannot pump water anymore because the water levels have gone so deep. States like Punjab, supposed to be ‘wheat bowl of India’ are facing water shortage. Farmers who have used 100 feet bore well are now digging their bore well up to 900 feet. To make the situation worse, many of coal-fired power plants are licensed to meet the increasing power demand in India. Both quantity and quality of water has a direct impact on energy demand and global warming. The rainwater which replenished the ground aquifers are unable to match the water sucked by these pumps. About 114 million people living in Rajasthan, Punjab, and Haryana including the capital city of Delhi are facing water shortage.

The likely alternative for these states is to desalinate the seawater from the west coast of India and pump them all the way to Delhi, which are thousand of kilometers from the coast. The increasing economic growth of India has increased the demand for power, often based on coal. Power industry is one of the largest users of water. Plants located on coastal are able to use seawater for their ‘once through’ cooling system and for boilers. But the plants located inland have to use only surface water like rivers. They cannot use ‘once through’ system, but use a closed circuit cooling systems where they have to store large pool of hard water.

It is a vicious cycle. Water shortage increase the demand for power and power shortage increases the demand for water. Desalination is the only alternative but it is a very energy intensive and a costly solution. Changing climate, global warming, deforestation, and water shortage are ominous signs of Nature’s fury against human greediness.

When countries like Australia set up their largest desalination facilities, the country experiences the heaviest rains in decades with flash flooding in many parts, making politicians wonder whether their water management decisions are right. Unfortunately Science cannot solve our greediness only human beings can learn lessons from Nature and take right decisions.

 

 

Seawater is the largest source of Fresh water as well as the source of Hydrogen energy.However; Seawater cannot be used directly for these applications and it requires further treatment. Seawater has a number of dissolved salts and the TDS, total dissolved solids, of seawater is about 35,000ppm (parts per million).The commonly used industrial desalination process is by RO (reverse osmosis) as well as by multi flash distillation (MFD). Both these processes are energy intensive.RO process requires electrical energy and MFD requires thermal energy. Most of the countries in Pesian  Gulf use desalination process to convert seawater into drinking water as well as industrial water. These oil rich countries depend on the desalinated seawater as their main source of drinking water supply. In the desalination process by RO, the TDS level of seawater is reduced from 35,000ppm to 500ppm, meeting the WHO (World Health Organization) specifications for drinking purpose. The advantage with reverse osmosis process is it can remove even the smallest bacteria and virus, during the desalination. The water can further be disinfected by the injection of Chlorine before distributing for drinking purpose.

Majority of Desalination plants use RO process because it is economical. There is a worldwide shortage for safe Drinking water and more and more SWRO plants are coming up in various parts of the world. The technology of RO has advanced so much that the cost of desalinated seawater can compete with surface water in many parts of the world, especially in Gulf region where the energy cost is low. The rapid increase in population and industrial growth has created a greater demand for fresh water.

In conventional SWRO process, only 35-40% of fresh water is recovered and the balance 60-65% is discharged back into the sea as a highly saline brine, with TDS levels exceeding 65,000pm, almost double the salinity of seawater. Similarly most of the power plants located on sea coasts are using seawater for cooling purpose. In once through cooling system, the seawater is circulated into the power plant to condense steam in turbines and returned back to the sea. The temperature and salinity of the returning water into the sea is always higher than the intake water. Some oceanographers feel that such slow increase in salinity of seawater affects the temperature of the sea and the climate.

However, discharge of highly saline brine into the sea has become routine and EPA (Environmental and Pollution Authority) of various countries routinely approve such discharge, claiming it does not affect the marine life much. The environmental impact study conducted in one country is routinely followed by many countries and invariably conclude that such discharge has a very little or no impact to the environment. Human beings are concerned only with their environment and not with the Ocean environment where variety of marine species live. Our oceans have been heavily polluted from the time of industrial revolution by oil spills, toxic industrial effluent discharges, desalination and power plant discharges. The TDS levels of seawater in Gulf region has considerably increased in the past few decades. The TDS levels are about 50,000 ppm against conventional levels of 35,000PPM.The oceans are acidified by absorption of excess carbon dioxide from the atmosphere due to greenhouse gas emissions.

The power required to desalinate seawater is directly proportional to the osmotic pressure of seawater. The osmotic pressure increase as the TDS level increases, which in turn increases the energy consumption by desalination plants. A recent report from US government says that fresh water will become a serious issue after a decade and even wars may be waged between countries for the sake of fresh water. The human activities not only cause global warming but also changing the chemistry of our oceans. Steadily dwindling fish population is a clear sign of changing chemistry and biology of our oceans. In the absence of a proven scientific evidence to show that  human beings cause these changes in the ocean, we will carry on our business as usual until we reach a point of no return.

If you add salt to the water, it will not boil at 100C at 1 atmospheric pressure but slightly at a higher temperature. It is high school physics. When the salinity of the ocean increases from 35,000ppm to 50,000ppm, does it not affect the evaporation of the sea, which condenses into a cloud and come back as a rain? Does it mean there will be less precipitation in the future? Even if the ocean is under constant circulation, the overall salinity level keeps increasing.

Wind is a potential source of renewable energy, especially for islands with an average wind velocity of 5mts/sec and above. Many islands in pacific ocean  have some common problems like sea erosion, shortage of power and drinking water. These small islands with little population are fully depending on diesel fuel. In fact their life depends on diesel fuel and any increase in price significantly affects their daily life. Their main source of income is only by fishing and they live day to today.

I had a personal experience of visiting a small island off Port Moresby in Papua New Guinea. They call it Dougo Island or ‘Fisherman’s island’ with population of less than 700 people. It is about 4.5km wide and 2km long. It is a coral atoll pushed out of the sea. One can take stroll on the beach and it is one of the most beautiful experiences one can have. It gives a feeling that you are far away from the rest of the world. There is a small abandoned World War II Airfield. The people in the island do not have any electricity or drinking water and most of them are fishing on small boats. Their boats are fuelled by diesel. They will go to nearby city of Port Moresby and sell their fish and with that money they will buy drinking water and diesel in cans and return to the island. This is their daily life.

Such an island is an ideal location to set up a wind turbine and a small sea water desalination plant, that can easily solve their problem of water and power. The trade wind from the Coral Sea in the island of Papua New Guinea blows almost 7-8 months in a year and their wind velocity averages 7 mts/sec. Two wind turbines of each 250 kW capacity and a small seawater desalination SWRO plant of capacity 15,000lts/day will be sufficient to solve their problems. The desalination plant will consume about 4.5Kwhrs/m3 of water generated. About 2000 kwhrs/day of power can be supplied to the village, each family consuming about 2.85 khrs/day for 6 hours/day and also for the desalination plant. The system will generate  a surplus power.

Renewable wind energy is the best option for such islands to generate on-site power and also to desalinate seawater for supply of drinking water. With increasing global warming and sea level rising, these small island face seawater intrusion and inundation. Many islands are slowly disappearing into the vast sea. Moreover, these islands are the most vulnerable to the fluctuating diesels prices and they are walking on a tight rope.Industrialised countries with an average power consumption of several kilowatt-hours per day are crying foul about rising energy cost while people in such small islands barely manage their food and shelter after paying for the diesel.

Recently the Government of Maldives conducted their cabinet ministers meeting under the sea, to showcase their plight due to sea level rise caused by global warming, to the rest of the world. Small islands can cry loud but their voice  is muffled by roaring sea, while rest of the world carries on their business as usual.

Seawater is an inexhaustible source of Hydrogen but the cost of generating Hydrogen from seawater is much higher compared to normal tap water. The quality of water should have a minimum electric conductivity at 0.1 micro Siemens/cm for electrolysis. Even our tap water is not up to this purity and it requires further purification. The electric conductivity of seawater is about 54,000 micro Siemens/cm.The conductivity increases due to the presence of dissolved salts. But seawater can be desalinated using the process of distillation or by the process called ‘reverse osmosis’. In both the above processes, desalination requires a large input of energy in the form of thermal or electrical. Currently the source of such energy comes from fossil fuels, which is one the biggest emitters of greenhouse gas emission. Many countries in the Middle East have shortage of fresh water and most of these countries depend on desalination of seawater for their fresh water requirements. The cost of desalinated water varies from $ 1.00 to $ 1.75/m3 depending upon the capacity, site and the cost of energy. The fresh water for potable purpose normally has a TDS (Total dissolved solids) of 500ppm (parts per million) or less and this can further be lowered to a required level using reverse osmosis.

Currently Hydrogen is generated as a by-product on an industrial scale by electrolysis of saturated sodium chloride brine during the production of Caustic soda. Chlorine is another by-product in the above process. Most of Caustic soda manufacturers use Hydrogen as a fuel or for the production of Hydrochloric acid. But there is an opportunity in caustic soda plants to use Hydrogen to generate more electricity using PEM (Proto exchange membrane) Fuel cell suitable for their electrolysis. This will aid these industries to cut their energy consumption, which is one of the highest in Chemical industries.

Alternatively, offshore wind turbines can be installed to generate power for seawater desalination and Hydrogen production. Offshore wind turbines generate 50% more energy than onshore wind turbines. An integrated process to generate fresh water, Hydrogen using wind turbine is an interesting renewable energy application. The stored Hydrogen can used to generate electricity in remote islands where diesel is used as a fuel. Most of the island in Pacific use diesel predominantly for boat as well as for power generators at exorbitant costs. The wind velocity in such islands is good to generate cheap and clean electricity. For example, the island of PNG has a severe power shortage and it is well located near Coral Sea, which has one of the highest wind velocities in Pacific Ocean. An average wind velocity of 7mts/sec and above is an ideal place for wind turbines. Since these islands are small with less population, wind generated Hydrogen is an ideal solution for their power problems. They can also desalinate seawater to supply drinking water using wind generated power. In fact they can also use Hydrogen as a fuel for their boats and generate power for their cold storage for fisheries. International financial institutions and local banks should come forward to fund such projects instead of funding diesel boats and generators. These islands have pristine water and abundant fish and their main income is only tourism.

Sun, Sand and wind is an ideal combination to generate renewable power all round the year and for tourism industry. It is an opportunity these islands cannot afford to miss. The author is personally involved in a wind based Hydrogen solution for a small island in pacific. The people of this island welcome such projects because it guarantees them an uninterrupted supply of clean power and drinking water. Otherwise they have to sell most of fish catches in a nearby city to buy diesel and drinking water just to survive!

 

 

Water makes up seventy-one percent of the planet earth and ninety-eight percent of it makes up the ocean.  It is a single source of water for all forms of life on earth and it also plays an important role in climate changes in the atmosphere. Ocean is the biggest heat sink and absorbs sun’s heat and also a carbon sink absorbing excess carbon dioxide from atmosphere. The surface temperature of seawater is warmer than the temperature at the bottom of the ocean. Sun supplies solar energy to the ocean. In fact the water temperature in Deep Ocean is about 15-20C less than the surface temperature, and it is used as a working fluid to cool buildings by evaporative cooling without using any electricity like commercial air-conditioning.

OTEC (ocean thermal energy conversion) system is a potential method of generating power using the temperature gradient between ocean’s surface water and ocean’s deep water. A temperature difference, as small as 15 -20C is enough to generate power using Kalina cycle, like geothermal energy systems. Commercial plants using this technology are already in operation in few countries. The biggest advantage with open cycle ocean thermal energy conversion system is the fresh water (desalinated ocean water) as a by-product. This technology is unique because it can generate not only power but also drinking water from sea without polluting the air with greenhouse gas emissions. In fact this technology should be deployed commercially is many islands around the world, where there is always a demand for power and drinking water.

“Water, water, everywhere but not a drop to drink”. It is the situation in many islands and many parts of the world. Islands like Maldives and Mauritius should adopt this technology to generate power and supply drinking water without burning fossil fuels like diesel or setting up desalination plants. Of course, the economy of scale and finance is an issue in many islands.

PNG (Papua New Guinea) is one of the biggest islands in Pacific Ocean where there is s severe shortage of   power and water. The country is endowed with rich minerals, oil and gas but the basic necessity like power and water are in short supply. OTEC will be an ideal solution for such islands. Fresh water supply is going to be a major issue in parts of the world due to global warming and climate changes. In countries like India, drinking water is in short supply and a number of seawater desalination plants are coming up. Bottled waters are expensive and unaffordable to a common man. This will only increase the power requirements in the country when there is already a massive shortage of power. OTEC is an ideal solution for India with its long coastal line.

One of the major issues with current power generation technologies is the pollution. In any combustion process involving fossil fuel the combustion products like carbon dioxide, carbon monoxide and Oxides of Nitrogen (the greenhouse gases) will contribute global warming. What is the level of such emission and how fast the globe is warming is a futile argument. The pollution can be small in term of PPM (parts per million) but the cumulative effects over several decades is a major issue and that cannot be simply dismissed. There are many places where the Arsenic content in drinking water is above certain acceptable levels (only in ppms) but such small excess cause debilitating health conditions. This is the same argument with greenhouse emission and global warming. It can be gradual and insignificant but it will reach a tipping point and dramatic changes can happen all of a sudden. Nature has got its own mechanism to adjust any imbalances and keep up certain equilibrium. But humans cannot take them for granted and pollute the air and water indiscriminately. There will be a price to pay.

 

Ocean is the largest and inexhaustible source of Hydrogen. Currently Caustic soda plants use sodium chloride (salt) brine as the raw material for conversion into Caustic soda; the by-products are Hydrogen and Chlorine. Caustic soda plants are currently using Hydrogen as a fuel or use to manufacture Hydrochloric acid. They can generate on site power using Hydrogen to offset their energy cost. In both water electrolysis as well as brine electrolysis, Hydrogen is a product and Ocean water is the largest source of such Hydrogen. In fact countries should generate Hydrogen using desalinated water and OTEC power. The stored Hydrogen is a stored energy that can be used as and when required. That is why we believe ‘water and energy are two sides of the same coin’.

 

Why I say “water and clean energy, are two sides of the same coin?” At the outset, it may sound odd, but in reality, these two are closely interconnected. Let us examine, step by step, how they are connected, to each other, and what are the implications, in terms of cost, and environmental issues.

Take for example, power generation industries. The two basic materials, any power plant require, are, fuel and water. It does not matter, what kind of fuel is used, whether it is a coal based power plant or liquid fuel based plant like Naphtha, or gas based plants, like piped natural gas or LNG Of course, this statement is applicable only, for existing, conventional power generation technologies, and not for PV solar or wind energy, technologies. Let us consider, only power generation, involving conversion of thermal energy, into electrical energy. Today, more than 80% of power generation in the world, is based on thermal power, including nuclear plants. What is the usage of water in power plants? All thermal power plants use steam, as the prime motive force, to drive the turbines, (gas turbine is an exception, but, even in gas based plants, the secondary motive force,  is steam, using waste heat recovery boilers, in combined cycle operations). The quality of water for conversion into steam is of high quality, purer, than our drinking water. The second usage of water is for cooling purpose. The water consumption by power plants, using once through cooling system is 1 lit/kwhr, and by closed circuit cooling tower, it is 1.7lit/kwhr .Only about 40% power plants in Europe, for example, use closed circuit cooling towers, and the rest use only ‘once through’ cooling systems. The total power generated in 2010, by two largest users, namely US and China, were 3792Twhrs and 3715 Twhrs  respectively. The total world power production, in 2008 was 20,262 Twhrs, using following methods.

Fossil fuel: Coal 41 %, Oil 5.50%, Gas 21%, Nuclear 13% and Hydro 16%.

Renewable: PV solar 0.06%, PV thermal 0.004%, Wind 1.1%, Tide  0.003 %, Geothermal 0.3%, Biomass &others 1.30%.

(1Twhrs is = 1,000,000,000 kwhrs)

The above statistics, gives us an idea, on how much water, is being used, by power generating plants, in the world. Availability of fresh water, on planet earth, is only 2.5% (96. 5% oceans, 1.70% ground water, 1.7% glaciers and ice caps, and 0.001% in the air, as vapor and clouds).The world’s precious water source, is used for power generation, while millions of people, do have water, to drink. The cost of bottled drinking water is US$ 0.20 /lit, in countries like, India. This situation is simply unsustainable.

The prime cause, for this situation, is lack of technology, to produce clean power, without using water. The power technology, we use today, is based on the principle of electromagnetism, invented, by Michael Faraday, in the year 1839. That is why, renewable energy, is becoming critically important, at this juncture, when the world is, at the cross road.

In order to overcome, the shortage of fresh water, many countries are now opting, for seawater desalination. Desalination, again, is an energy intensive process. For example 3-4 kwhrs of power is used, to desalinate 1 m3 of water. This  power has to come, from fossil fuel fired, thermal power plants, which are often co-located, with desalination plants, so that, all the discharge, from both the plants, can be easily pumped into the sea. Since, the world is running out of fresh water, we have to look for attentive source of water. In countries like India, the ground water is being exploited, for agricultural purpose, and the ground water is getting depleted. Depleting water resources is a threat to agriculture production. It is a vicious circle.

That is why, distributed energy systems, using Hydrogen as an alternative fuel,  is an important step, towards sustainability. One can generate Hydrogen from water, using renewable energy source, like solar or wind, and store them, for future usage. The stored Hydrogen can be used to generate power, as and when required, at any remote location (even where there is no grid power).The water is regenerated, during this process of power generation using Fuelcell, which can be recycled. There is no large consumption of water, and there is no greenhouse emission. It is a clean and sustainable solution. The same stored Hydrogen can also be used as a fuel for your car! Therefore; (The above statics are based on Wikipedia data).

%d bloggers like this: