Skip navigation

Category Archives: Hydrogen

CRT flow diagramIt is now possible to convert your CO2 emissions from gas fired power plants into synthetic fuel thanks to cheap solar energy! Once you convert into synthetic fuel then you can recycle it so that your industries can power for good. It is a great way of storing your solar energy into a readily deployable fuel source. By generating heat and power from the synthetic fuel the industries can reap enormous economic benefits while achieving Zero Carbon emission. It is a win situation for people, environment and the governments around the world.

CEWT can demonstrate such a system to potential customers who are currently generating power using natural gas. If you are running a Caustic soda plant where you get Hydrogen as a by-product we can use that Hydrogen and generate additional Hydrogen by installing PV solar panels so that the CO2 emissions from your power plant can be converted back into synthetic fuel. That mean you can generate your own fuel and power at fraction of a cost while achieving Zero Carbon emission. You can even run your fuel cell car from the above Hydrogen. You may be eligible even for Carbon credit for curtailing the Carbon emission from your power plant.

When we started blogging about this technology 7 years back the same idea was not entertained by financial institutions and governments. Thanks to the awareness of climate change and Carbon pollution created by 190 countries who signed the Paris agreement. Though many countries agreed to cut their Carbon emission they could not fulfil their obligations under the treaty for various reasons. The emissions have gone up in 2016.

CEWT can undertake this CRT Carbon recycling technology (patent pending) in countries like India and China where Carbon pollution is rampant and energy demand is increasing at the fastest rate in the world. The cost of solar energy in India has come down substantially thanks to the aggressive promotion of solar industry by Government of India.

CRT is an ideal technology for caustic soda plants to reduce their power consumption and to convert their Carbon emission into a synthetic fuel. It is much easier for them to use their Hydrogen one of the by-products of the industry and they can easily supplement with Hydrogen generated from solar power. By using CRT caustic soda plants can reduce their cost of production by energy efficiency, obtain Carbon credit for Carbon reduction and achieve and price stability for their products.

We can demonstrate the technology by installing a model plant in your country and show case many possibilities. It is the beginning for a Carbon free energy of the future and great potential for Hydrogen cars and to eliminate Carbon pollution that is chocking New Delhi and Beijing.

www.clean-energy-water-tech.com

courtesy : Hydrogenics

Renewable Hydrogen usage

The technology towards zero Carbon emissions from transportation has gained importance due to increasing air pollution from automobiles. It is not just the Carbon emission but oxides of Nitrogen and Sulphur, but also water vapour (more potent Greenhouse gas) to gather with particulate matters that compounds the emission problems.

Current automobiles based on Internal combustion is not only energy inefficient but generates noise and air pollution. Therefore, battery cars and Hydrogen cars are increasing in popularity and competing with each other. We can examine the merits and demerits of these two technology for a better understanding.

Transportation uses mechanical energy derived from thermal energy generated by combustion of fossil fuels but battery cars as well as hydrogen cars convert an electrochemical energy into mechanical energy. As we know energy can neither be created not destroyed but can be converted from one form to another form. The word “energy storage” is a misnomer because electrical energy is generated at the point of usage from stored chemicals by way of redox reactions. In both cases, we generate electrical energy from batteries or from Hydrogen through Fuel cell and then convert it into mechanical energy. Both battery as well as Fuel cell convert chemical energy into electrical energy by electrochemical reaction namely redox reactions. For a redox reaction, we need both reduction (reductant) and oxidation (oxidant) reactions to take place simultaneously to effect flow of electrons from corresponding ions which we call electricity. It is clear from the above we need two reactants namely reductant and oxidant. In batteries both the reactant and oxidant are stored in solid form or in a liquid form in ‘flow batteries’. The chemistry of the redox reaction will determine the speed, size and the life of the battery. This creates a constraint on the size, weight and life of the battery to achieve a specific mileage. It means battery has a limitation when comes to size, life and mileage to be achieved. Tesla is currently leading the way in batteries both for stationery as well as transport applications. For stationery applications the space, weight and life may not be a big constraint but the life is a constraint and therefore the cost.

But in transport applications all the above three parameters are critical and therefore battery may not be a long-term solution. In Hydrogen Cars Hydrogen gas is stored in a compressed form at high pressure in a cylinder. There is no Oxygen storage but only air is used as the Oxidant. Fuel cell uses both Hydrogen and Oxygen to generate electrical energy at the point of usage to run the motor. Electricity is not stored. The main difference between battery and fuel cell is, battery carries both Oxidant as well as reductant on board in solid form which weighs and occupies space; Fuel cell carries only Hydrogen as the reductant in gaseous form and not Oxidant. Hydrogen is a light weight and only the storage tank in the form of composite material is the actual weight. Moreover, there is more room to store Hydrogen like a Hydrogen bus which carries cylinders at the roof top. If we use renewable energy source such as solar and wind then Hydrogen generation and dispensing will not be a serious constraint for Hydrogen generation and distribution in the future. The biggest disadvantage with Fuel cell is the cost due to expensive catalyst such as Platinum.

Each technology has its own advantages and disadvantages but the fundamental facts of these technologies will give us a glimpse of the future potential. In battery technology storing the reactants in solid form is an issue. Air metal battery has a good potential yet a long way to go. Similarly, if Hydrogen can be generated at the point of usage without storing Hydrogen on board that will open a greater potential. There may a hybrid solution in the future that can integrates both battery and Hydrogen- Fuel cell technologies will be the way forward. Research is being carried out to design a rechargeable Fuel cell battery with enhanced performance and cyclability. Such technologies will also guarantee a clean renewable energy storage technologies for stationery applications in the future. Hydrogen can be derived from many abundant natural sources such as seawater as I have explained in my previous article “CAPZ desalination technology uses only sun, sea and wind”.Toyota mirai power supplyToyota mirai layout

Many people argue that Hydrogen is not an energy source but an energy carrier. Hydrogen is certainly an energy source by itself but is to be derived from other primary sources such as water or natural gas because Hydrogen is not available in a free form. Generation of Hydrogen from its sources require an additional energy but when such an energy is provided by renewable sources such as sun, wind and sea then the cost becomes secondary in the long run. Therefore, battery may not be able to compete with hydrogen in the long run though it provides a temporary solution to pressing power problems in short term. Moreover, batteries rely on materials like Lithium whose availability is limited even though they are recyclable.

CAPZ (Clean water at affordable price with zero discharge) is a new desalination concept that separates seawater into fresh drinking water and industrial salt both simultaneously using only sun and wind power. Seawater is nothing but fresh water in abundance with valuable mineral salts dissolved in it. These minerals include Sodium, Potassium, Lithium and Magnesium and a host of other minerals in traces. It requires a holistic approach to separate them in their pure form along with fresh water for potable and industrial applications. CAPZ technology precisely attempts to do that so that the seawater intake can be put into huge economic usage while reducing or eliminating completely the discharge of highly saline effluent contaminated with chemicals back into the sea. With increasing demand for fresh water and depleting sources of fresh water due to natural and man-made causes , sea water has become an important source for fresh drinking water. Sea water is not only a source of fresh water but also a new source of clean Hydrogen an energy of the future. It requires only sun ,sea and wind to achieve this!

CAPZ application

Automobile industry has come a long way since the time of Henry Ford. The internal combustion engine that drives the modern car is slowly but steadily evolving into an emission free engine. The carbon pollution has caused globe to warm and changed the climate and also caused respiratory illness for millions of people around the world for decades. The Carbon pollution was completely ignored in the past while other design features of the car have undergone massive changes. However, when the smog and deteriorating air quality of Delhi and Beijing was beamed around the world in our TV sets, people realized how vulnerable they are to carbon pollution.

But how to eliminate the Carbon emission from our automobiles?

1.The simple answer is to substitute the fossil fuels we use every day such as Petrol and Diesel with Carbon free fuel such as Hydrogen.  Hydrogen being a light gas it has to be compressed and liquefied so that it can occupy less space. However, it requires a special ‘cryogenic tank’ to store liquid Hydrogen at – 253 C. BMW has already produced a commercial vehicle and it is in the market. However, the Hydrogen dispensing stations are limited in numbers. It uses existing internal combustion engine suitably modified for Hydrogen fuel so that they can use existing infrastructure that produces their petrol engines. There is no carbon emission except for water vapour. However, Hydrogen should be generated using renewable energy sources such as solar or wind. Hydrogen generated by reformation of natural gas will still have a Carbon foot print. It can be classified as a Carbon free car depending upon how Hydrogen is generated. However, producing liquid hydrogen or filling in a cryogenic tank is not commercially feasible for individual household. Hydrogen supply will have to be a centralized filling station. BMW has recently focussing their attention towards Fuel cell car. While those early vehicles were fun to drive, they suffered from the inefficiencies of super-cooling the liquefied hydrogen, and the hydrogen vaporizing in storage. Around the turn of the century, BMW began to research the hydrogen-powered, fuel-cell electric vehicle as an alternative to the hydrogen-powered combustion engine.

2.The other alternative is to substitute fossil fuel with compressed Hydrogen that generates an electric power using Fuel cell that drives the motor and the car. Here both fossil fuel and internal combustion engine are substituted with Hydrogen fuel and Fuel cell. This is a marked deviation from a conventional car. Honda of Japan was the first to introduce a commercial car using a Fuel cell. It uses compressed Hydrogen at 70 Mpa pressure that supplies Hydrogen to PEM (proton exchange membrane) Fuel cell that generates power that drives the motor and the car. There is no emission except for water vapour. The car runs smoothly and silently because there is no mechanical engine or moving part. It is truly a Carbon free car if the Hydrogen is generated from a renewable energy source such as solar or wind. It is ideal for houses with roof top solar panels. However, one has to install a water purifier, an electrolyser, a compressor and a compressed tank for Hydrogen storage. If the Hydrogen is generated by steam reforming of Natural gas, then it will have a Carbon footprint and cannot be classified as carbon free car. Generation of Hydrogen using roof top solar panel, electrolysis and compression is possible by individual households but it involves still some risk due to the explosive nature of Hydrogen. A centralized Hydrogen dispensing is still a safer method.  Toyota Mirai Fuel cell car is a new model introduced by Toyota motor Co of Japan. It too has certain additional features such as a power generator for a remote households or camp.

2.The third alternative is to eliminate fuel as well as the engine completely; instead supply power to the motor from a storage battery. Here there is no emission or noise because there is no engine or moving parts similar to Fuel cell car. However, the battery is heavy and occupies a large space and it requires frequent charging from an external power source. The power often comes from the main power grid which carries the power generated from a power station which invariably uses fossil fuel. Though there is no Carbon emission from the electric car it still has Carbon footprint. However, if the power is generated from a renewable energy source such as solar and wind then it can be classified as Carbon free car. It is ideal for houses with roof top solar panels. However, it should be connected to the power grid in parallel. Alternatively, it can be connected to a storage battery if there is no grid.

The Lithium ion battery pack in Tesla Roadster weighs 990 pounds, stores 56 kWh of electric energy, and delivers up to 215 kW of electric power. Tesla battery packs have the highest energy density in the industry. To achieve this energy density, Tesla starts with thousands of best-in-class Lithium-ion cells and assembles them into a liquid-cooled battery pack, wrapped in a strong metal enclosure. The battery is optimized for performance, safety, longevity, and cost. The cells used in a Roadster employ an ideal chemistry for electric vehicles

Nickel Metal Hydride (NiMH) batteries are commonly used in hybrid cars. However, a 56 kWh NiMH battery pack would weigh over twice as much as the Roadster battery. Instead, Tesla uses Li-ion battery cells which dramatically decrease the weight of the Roadster pack and improve acceleration, handling, and range.

With Lithium-ion chemistry, there is no need to drain the battery before recharging – there is no “memory effect”. Roadster owners simply “top-off” each night

Each of the above cars have their own advantages and disadvantages. However, Fuel cell cars have certain advantages over Electric cars in spite of the advancement in battery technology primarily due to the weight of the battery and frequency and time required to charge the battery. Fuel cell car has a capacity to store Hydrogen fuel as well as to generate power onsite and this advantage will go a long way to make fuel cell cars truly carbon free not only for transportation but also for stationery power generation in remote locations.

A large scale deployment of renewable energy generation such as solar and wind around the world can deliver a Car that is truly carbon free. However fossil fuel power generation will continue for years to come as the new technologies are developed to generate power using fossil fuel without emitting Carbon emission such as Carbon recycling. The real winner of the car race will depend upon how a Carbon emission free power generation technology will emerge in the future. Whatever may the power technology Fuel cell be here to stay and if a cheap alternative catalyst is developed for Fuel cell then the race will be well and truly on.(Ref : BMW,Honda,Toyota and Tesla Roadster websites)

 

The Carbon emission in the atmosphere is steadily increasing.  The latest statistics indicates that it has reached a staggering 35.6 billion tons/yr, a 2.6% increase over the previous year, thanks to the growth of China. It is becoming clear that there is a relationship between the Carbon emission, global warming and erratic weather patterns around the world. According to ‘The Guardian’,

“The chances of the world holding temperature rise to 2C – the level of global warming considered “safe” by scientists – appear to be fading fast with US scientists reporting the second-greatest annual rise in CO2emissions in 2012. Carbon dioxide levels measured at Mauna Loa observatory in Hawaii jumped by 2.67 parts per million (ppm) in 2012 to 395ppm, said Pieter Tans, who leads the greenhouse gas measurement team for the US National Oceanic and Atmospheric Administration (NOAA). The record was an increase of 2.93ppm in 1998.

The jump comes as a study published in Science on Thursday looking at global surface temperatures for the past 1,500 years warned that “recent warming is unprecedented”, prompting UN climate chief, Christiana Figures, to say that “staggering global temps show urgent need to act. Rapid climate change must be countered with accelerated action.” Tans told the Associated Press the major factor was an increase in fossil fuel use. “It’s just a testament to human influence being dominant”, he said. “The prospects of keeping climate change below that [two-degree goal] are fading away.

Preliminary data for February 2013 show CO2 levels last month standing at their highest ever recorded at Manua Loa, a remote volcano in the Pacific. Last month they reached a record 396.80ppm with a jump of 3.26ppm parts per million between February 2012 and 2013. Carbon dioxide levels fluctuate seasonally, with the highest levels usually observed in April. Last year the highest level at Mauna Loa was measured at 396.18ppm. What is disturbing scientists is the acceleration of CO2concentrations in the atmosphere, which are occurring in spite of attempts by governments to restrain fossil fuel emissions. According to the observatory, the average annual rate of increase for the past 10 years has been 2.07ppm – more than double the increase in the 1960s. The average increase in CO2 levels between 1959 to the present was 1.49ppm per year.

The Mauna Loa measurements coincide with a new peer-reviewed study of the pledges made by countries to reduce CO2 emissions. The Dutch government’s scientific advisers show that rich countries will have to reduce emissions by 50% percent below 1990 levels by 2020 if there is to be even a medium chance of limiting warming to 2C, thus preventing some of climate  change‘s worst impacts.”The challenge we already knew was great is even more difficult”, said Kelly Levin, a researcher with the World Resources Institute in Washington. “But even with an increased level of reductions necessary, it shows that a 2° goal is still attainable – if we act ambitiously and immediately.” Extreme weather, which is predicted by climate scientists to occur more frequently as the atmosphere warms and CO2 levels rise, has already been seen widely in 2013. China and India have experienced their coldest winter in decades and Australia has seen a four-month long heat wave with 123 weather records broken during what scientists are calling it ‘angry summer’. “We are in [getting] into new climatic territory. And when you get records being broken at that scale, you can start to see a shifting from one climate system to another. So the climate has in one sense actually changed and we are now entering a new series of climatic conditions that we just haven’t seen before”, said Tim Flannery, head of the Australian government’s climate change commission, this week. Earlier this week the Met Office warned that the “extreme” patterns of flood and drought experienced by Britain in 2012 were likely to become more frequent. One in every five days in 2012 saw flooding but one in four days were in drought”.

The biggest question now is how to put this Carbon genie back into the bottle? renewable energy may be an answer to curtail future Carbon emissions but what about the existing coal-fired power plants that constitutes 60% of the existing power generation in the world? There is no easy solution. But the “Law of conservation of mass” gives us a clue.The Carbon we dig from the earth in the form of coal, combusted into the atmosphere as Carbon dioxide may be captured and recycled back into the system in the form of a fuel.By this way, we may not need fresh coal to be mined.To achive this feat,we need Hydrogen from a renewable source.The renewable Hydrogen can be combined with Carbon dioxide captured from the coal-fired power plants to generate synthetic natural gas (SNG).The SNG generated by this method can be used for future power generation, substituting Coal and future carbon emission can be recycled in the form of SNG. This approach will open up a range of possibilities and potentially cut the carbon emission to zero.Annual CO2 growthAtmospheic Carbon increaseCO2 emissionsGlobal Carbon emissionHydrosol cycleHydrosol thremocycle

Many companies round the world including DOE (Department of energy,Govt of USA) are trying to develop an economically viable method to generate Hydrogen with an estimated cost of poduction at  $ 2.50 /kg of Hydrogen. One potential method is to generate Hydrogen by splitting water using a thermo-chemical process using concentrated solar therml energy developed by European Union called “Hydrosol cycle”. The method by which Hydrogen is generated should be free from any Carbon emision. To clean up  1 Kg Carbon dioxide one will require at least 0.2kg Hydrogen. For example, a 100Mw coal fired power plant emitting about 2256 Mt CO2/day will require about 451 Mt of Hydrogen/day, costing about $1,127,500 per day.It will cost roughly $500/Mt of C02 to  put the ‘ Carbon genie’  back into the bottle! One can imagein the cost of cleaning up  35.6 billion tons of Carbon dioxide  from the atmosphere.Only a Carbon free Hydrogen derived from water can save the world from a potential catastrophe.

Renewable Hydrogen offers the most potential energy source of the future for the following reasons. Hydrogen has the highest heat value compared to rest of the fossil fuels such as Diesel, petrol or butane. It does not emit any greenhouse gases on combustion. It can readily be generated from water using your roof mounted solar panels. The electrical efficiency of fuel cell using Hydrogen as a fuel is more than 55% compared to 35% with diesel or petrol engine. It is an ideal fuel that can be used for CHP applications. By properly designing a system for a home, one can generate power as well as use the waste heat to heat or air-condition your home. It offers complete independence from the grid and offers complete insulation from fluctuating oil and gas prices. By installing a renewable Hydrogen facility at your home, you can not only generate Electricity for your home but also fuel your Hydrogen car. The system can be easily automated so that it can take care of your complete power need as well as your fuel requirement for your Hydrogen car. Unlike Electric cars, you can fill two cylinders of a Hydrogen car which will give a mileage of 200miles.You can also charge your electric car with Fuel cell DC power.

Renewable Hydrogen can address all the problems we are currently facing with fossil fuel using centralized power generation and distribution. It will not generate any noise or create any pollution to the environment. It does not need large amount of water. With increasing efficiency of solar panels coming into the market the cost of renewable Hydrogen power will become competitive to grid power. Unlike photovoltaic power, the excess solar power is stored in the form of Hydrogen and there is no need for deep cycle batteries and its maintenance and disposal. It is a one step solution for all the energy problems each one of us is facing. The only drawback with any renewable energy source is its intermittent nature and it can be easily addressed by building enough storage capacity for Hydrogen. Storing large amount of energy is easy compared to battery storage.

The attached ‘You Tube’ video footage show how Solar Hydrogen can be used to power your home and fuel your Hydrogen car. Individual homes and business can be specifically designed based on their power and fuel requirements.

Photovoltaic  solar energy  is becoming popular as a source of clean energy and an alternative to fossil fuels to combat climate change. Though the initial cost is expensive people have started realizing the potential of PV solar as  a real alternative to grid power, especially when they can export surplus power to the grid and earn some revenue. It is  a source of income for potential investors as the energy cost keeps rising steadily. The cost of solar panels, batteries and inverters are slowly coming down as the systems get more popular and more competition is created in the market. However, during cloudy days or when the solar hours are less, the power generation by solar panels is considerably low. Moreover, the ‘power in tariff ‘ system is not available in many countries especially in developing countries. Therefore, energy storage becomes an issue. Lead acid batteries serve as storage devices for smaller applications but it becomes expensive for lager systems. Operation and maintenance, replacement and waste disposal are some of the issues with battery storage.

Generating Hydrogen on site using solar power and storing Hydrogen under pressure in a tank is the best method of storing solar energy. The stored Hydrogen can be used to generate power using a Fuel cell as and when we need power. However, the amount of energy required to convert water into Hydrogen using Alkaline Electrolyzer or Solid Polymer Electrolyzer is still high, averaging 5-7 kwhrs/m3.When you calculate the economics of  Hydrogen storage versus battery storage using a computer modeling for a stand alone system, it is clear that Hydrogen storage is more economical and also guarantees an uninterrupted power supply using a Fuel cell.

One US company has developed a Carbon doped Titanium oxide nanopowder visible light photo catalyst to  generates Hydrogen using sun’s light energy. The company claims that it consumes only one-third of the power consumed by PEM Electrolyzer or half of an Alkaline Electrolyzer.It can be easily installed at roof tops and it can generate Hydrogen even at one-third of sunlight because it can effectively use short UV light and blue wave length of suns light because these energetic wavelengths penetrate cloud cover more effectively than the rest of sunlight. A 2mm modular solar panel can be installed on roof top or installed in multi-acre field installations. Even during the absence of sunlight the company claims it can use grid power to generate Hydrogen using its hybrid integral (MMO) Mixed metal oxide Titanium anode as efficiently as PEM Electrolyzer.

While a PEM electrolyzer generates about 1.3kg Hydrogen from a power input of 100Kwhrs, this model can generate about 2.5kg Hydrogen using MMO + TiO2 anode and about 3.8kg using TiO2 alone. (Based on higher heating value of Hydrogen at 39.4 kwhrs/kg).The panel consuming 26.7kwhr power at 1.0Volt DC current at Anode can generate 1.25kg Hydrogen with Electrolysis electrical efficiency at 148%.  This will make Hydrogen fuel a commercial reality because it will consume only 21.36 kwhrs of Dc power to generate 1 Kg Hydrogen. The generated Hydrogen can generate about 15 Kw power using a Fuel cell. This is an elegant solution to generate and store power using sun’s light than Photovoltaic power.

Nature has a wonderful way of capturing Carbon and recycling it through a process called ‘carbon cycle’ for millions of years. The greenhouse gases in the atmosphere were restricted  within certain limits when it was left to Nature. But when human being started burning fossil fuels to generate power or to run cars, the GHG emission surpassed the limit beyond a point where global warming became an issue. The GHG level has increased to 392 ppm level for the first in our long history. Many Governments and companies are exploring various ways and means to reduce greenhouse emissions to avoid global warming. Some Governments are imposing taxes on carbon emission in order to reduce or discourage such emissions. Others are offering incentives to promote alternative energy sources such as wind and solar. Some companies are trying to capture Carbon emission for sequestration.

While we try to capture Carbon and store them underground, there are many potential commercial opportunities to recycle them. This means the Carbon emission is captured and converted into a commercial fuel such as Gasoline or Diesel or Methane so that future sources of fossil fuels are not burnt anymore. But this is possible only by using ‘Renewable Hydrogen’. Hydrogen is the key  to reduce carbon emission by binding carbon molecules with Hydrogen molecule, similar to what Nature does.

When NASA plans to send a man to Mars they have to overcome certain basic issues. Mars has an atmosphere with 95% Carbon dioxide, 3% Nitrogen, 1.6% Argon and traces of oxygen, water and methane.Nasa is planning to use Carbon dioxide to generate Methane gas to be used as a fuel and also generate water by using the following reaction.

CO2 + 4H2—–CH4 + 2 H2O

2H2O——-2H2 + O2

The water is electrolyzed to split water into Hydrogen and Oxygen using solar power. The resulting Hydrogen is reacted with Carbon dioxide from Mars to generate Methane gas and water using a solid catalyst. This methanation reaction is exothermic and self sustaining. How this can be achieved practically in Mars in those conditions are not discussed here. But this is a classical example on how the Carbon emission can be tackled to our advantages, without increasing the emissions into the atmosphere. There are several methods available to convert Carbon emission in to valuable products including gasoline. The  reaction of the methane with water vapor will result in Methanol.

2H2 + CO——– CH3OH

On Dehydration, 2CH3OH —– CH3COCH3 + H2O.Further dehydration with ZSM-5 Catalyst gives Gasoline 80% C5+ Hydrocarbon. Gas to liquid by Fischer-tropic reaction is a known process.

Carbon dioxide is also a potential refrigerant to substitute CFC refrigerants that causes Ozone depletion. Carbon recycling is a temporary solution to mitigate Greenhouse gas emission till Hydrogen becomes an affordable fuel of the future. It depends upon individual Governments and their policies to make Hydrogen affordable. Technologies are available and only a political will and leadership can make Hydrogen a reality.

World is busy developing alternative to Fossil fuel to cut anthropic Greenhouse gas  to avoid global warming. In fact all forms of alternative energy sources except nuclear energy are ‘solar energy’ from the sun, in one form or another. Sun has supplied energy from the time earth was born. It has conducted   ‘photosynthesis’ by supplying light energy and converting atmospheric carbon dioxide and water into glucose for plants, animals and human beings. The excess carbon from the ‘Carbon cycle’ has become fossil fuels under the earth over a time. The fossil fuel is the result of sun’s energy or solar energy. We unearthed fossil fuels and burnt them to extract energy to run our power plants or run our cars. In fact fossil fuel is also a form of  ‘Biofuel’ and technically there is no difference between them except fossil fuel formation takes millions of years.Fossil fuel is nothing but a source of Hydrogen with carbon backbone.

All forms of alternative energy sources we are currently trying to develop such as PV solar, solar concentrators, solar thermal, geothermal energy, wind energy and bioenergy etc, originate from solar energy. The word alternative energy is a misnomer because all these energy are fundamentally solar energy in one form or another.

Solar energy is a radiation of Nuclear fusion  of Hydrogen taking place in the sun. Two Isotopes of Hydrogen called Deuterium (with one proton and one neutron) combine to form a Helium 3 atom and Neutron with release of large energy. Deuterium is non-radioactive and can be extracted from seawater. But this process could not be duplicated commercially for Electricity generation. It is the safest and cleanest form of energy.

In other words, all forms of energy including solar energy come from Hydrogen. That is why Hydrogen has become a potential fuel source in the future. However, developing a commercial technology for the production and usage of hydrogen at a rate cheaper than fossil fuels with zero greenhouse emission has been elusive so far. Generation of Hydrogen from water by Photo electrolysis using a direct sunlight using a Photo catalyst is a promising technology. But duplicating Nature to generate large amount of energy using tiny amount of Hydrogen atom seems to be a distance dream. Nature knows the best. We human beings can use small energy generation technologies such as solar and wind to meet our small energy needs. “There is enough to meets everybody’s need but not everybody’s greed”,Gandhi said.

Exponential growth of population and industries has forced us to look for large power generation and fuel usage at the cost of serious environmental degradation and future generations. Only smarter and cleaner technologies will help sustain the future. Politicians and policy makers  should understand various technologies and their implications than advocating short-sighted and popular energy policies.

Hydrogen has been accepted as a source of clean energy for many reasons. Hydrogen can eliminate anthropic Greenhouse Gas  into the atmosphere and stop global warming. It has high energy content than any other fossil fuels we are currently using, making it an efficient fuel. The combustion product of Hydrogen is only water which is   recyclable. Many people, Governments  and institutions around the world are trying develop  cheaper methods of generating Hydrogen from various sources both renewable as well as non-renewable. The non-renewable sources are supposed to facilitate a smooth transition from fossil fuel economy to Hydrogen economy.

However, all attempts to generate Hydrogen at a cost lower than the projected cost of $ 2.50 per kg by DOE has not been successful, even though many recent technologies are promising. Meanwhile massive investments are made on Renewable Energy including wind, solar and biological all over the world. Generating Hydrogen from water using Solid Polymer Membrane Electrolyzer is a known technology using renewable energy sources. One can easily deploy such systems for commercial applications even though it is now expensive.

Many people and institutions are also claiming ‘free energy’ sources with or without generating Hydrogen. In some cases researches are claiming an abnormal production of Hydrogen using ‘Cold plasma’ or ‘Plasma electrolysis’ of water, as much as 800% more than the theoretical values. Some companies claim low energy consumption using photo- catalyst to generate Hydrogen  using direct sunlight and water. Hydrogen generation using renewable sources is a distinct possibility to cut the cost of Hydrogen in the long run. However, the world is in hurry to develop a cheap and sustainable method of Hydrogen generation without any greenhouse gas emissions.

One US based company is claiming to have invented a new Hydrogen atom which has not been reported before in the literature. According to the inventor, this new atom of Hydrogen is called ‘Hydrino’.He has presented a detailed theory called ‘Grand Unified Theory’   that predicts catalysts that allow energy to be extracted from lower energy state of Hydrogen atom. They have demonstrated the process using a proto type in the laboratory and their claims have been validated by an independent Laboratory after conducting trial runs and analyzing the results using spectrum analysis and other techniques.

The process involves a generation of Hydrogen by using electrolysis of water. The resulting Hydrogen is then reacted with a proprietary solid catalyst developed by the company. According to the company,

“Since certain proprietary catalysts cause the hydrogen atoms to transition to lower-energy states by allowing their electrons to fall to smaller radii around the nucleus with a release of energy that is intermediate between chemical and nuclear energies, the primary application is as a new primary energy source. Specifically, energy is released as the electrons of hydrogen atoms are induced by a catalyst to transition to lower-energy levels (i.e. drop to lower base orbits around each atom’s nucleus). The lower-energy atomic hydrogen product called “hydrino” reacts with another reactant supplied to the reaction cell to form a hydride ion bound to the other reactant to constitute a novel proprietary compound. Alternatively, two hydrinos react to form a very stable hydrogen-type molecule called molecular hydrino. Thus, rather than pollutants, the byproducts may have significant advanced technology applications based on their stability characteristics. For example, hydrino hydride ions having extraordinary binding energies may stabilize a cation (positively charged ion of a battery) in an extraordinarily high-oxidation state as the basis of a high-voltage battery. Further, significant applications exist for the corresponding molecular hydrino wherein the excited vibration-rotational levels could be the basis of a UV laser that could significantly advance photolithography and line-of-sight telecommunications. A plasma-producing cell based on the extraordinarily energetic Process has also been developed that may have commercial applications in chemical plasma processing and as a light source.”

The company claims that an average generating capacity of a system will be 1000kw, with installed cost at $1000/kw with fuel cost at less than $0.001/kw with zero greenhouse emission.The solid catalyst is regenerated and recycled. The cost of Hydrogen from electrolysis becomes insignificant due to generation  of large excess thermal energy, to generate power.

The above claims are too attractive to ignore and it could be a game changer in the energy industry. The output energy is more than the theoretical values calculated,  thus violating the Law of Thermodynamics. This excess energy is attributed to the presence of ‘Hydrino’. However, one has to be open to new ideas because science is ever-changing and even well-established theories and concepts are challenged as Science evolves with new discoveries and inventions.

 

 

 

%d bloggers like this: