Skip navigation

Category Archives: Greenhouse gas

Battery 8hrs and Hydrogen 2 months autonomy24hrs batery storage modelBattery 10hrs and Hydrogen 17hrs autonomyBattery 8hrs and Hydrogen 2 months autonomy172 hrs (one week) battery autonomyAfrica- Australia conference

Most of the renewable energy projects that are now set up around the world are grid connected with feed-in power tariff arrangement. People can generate their own electricity by solar/wind to meet their demand and supply the surplus power to the grid at an agreed power rates. They can also draw power from the grid if there is any short fall in their production of renewable energy. It is two-way traffic. There is an opportunity for people to generate revenue by sale of surplus power. It is an incentive for people to invest on renewable energy and that is why the investment on renewable energy has steadily increased over a time. But this is not the case with many developing and under developed countries. The situation is still worse in many islands where there is no centralized power generation at all or power distribution through grids. They depend on diesel generators. Even to transport diesel from mainland they have to use diesel operated boats. They have no drinking water even though they are surrounded by sea. I happened to visit a remote island in PNG few years ago and saw the plight of those people first hand. They live in absolute poverty and nobody cares to offer them a solution. Their voices are never heard and permanently drowned in the deafening roar of the sea.

The problems of supplying clean power and water to these remote islands are not only political but also technical and commercial in nature. One has to use only commercially available systems and components which are meant for a single or three-phase grid connected power supplies. Even though renewable energy sources basically generate only direct current (DC), one has to convert them into alternate current (AC) for easy distribution and to use appliances which are designed for AC operations. Isolated communities like islands can use direct current and also use DC operated appliances because they are commercially available and they are more efficient. Anyhow most of the house appliances need DC supply and AC/DC converters are commonly used for this purpose thus sacrificing efficiency in the process. They also need better storage solutions because they are not connected to the grid and they have to necessarily store power for several days. Some of these islands are connected with inefficient wind turbines backed by diesel generators. It is an absolute necessity to incorporate a long-term storage capabilities in the system if one has to offer a continuous power and clean water. If the wind velocity is not enough (during off seasons) or if there is no sun (cloudy) for days together and if there is not enough storage capacity, then all the investment made on the project will be of no use. Any half-baked solutions will not serve the real purpose.

There are also commercial problems because a well designed system will cost more, which will eventually increase the power tariff. Unless the Government subsidizes the power   sufficiently, people cannot afford to pay for their electricity or water. It requires a careful planning and community consultations to set up a ‘stand alone renewable energy projects in islands’. Governments in the pacific islands should act with great urgency because there is also a risk of inundation by sea level rising due to global warming.

We are in the process of designing a solution to provide such islands with clean power, clean drinking water and even wireless connectivity for schools so that children can get education. It may sound ambitious but it is the first step one has to take into long journey of sustainability and self-reliance by these isolated communities. There is a good possibility that such island may one day become completely independent and self-sufficient with clean power and water.

The same solution can be implemented in other countries too. Many countries have necessary infrastructure to generate and distribute power yet they suffer regular power cuts and black outs due to inefficiencies in their system.

Our proposed solution can provide uninterrupted clean power and water because the system will have long duration centralized energy storage. We have made a detailed analysis of various alternatives available for the above purpose using Homer hybrid solution software. The solution proposes a PV solar with storage solutions using battery bank as well as Fuel cell back up. The solution also proposes a long duration of storage ranging from few hours up to a fortnight .It is a standalone system with complete energy management and suitable for remote operations. The solution can also incorporate wind turbine in addition to PV solar depending upon the site and wind velocity profile.

The model is to supply clean power and drinking water for 600 families with an average 3 people in a family. The system will supply power at the rate of 1.50kwhrs/day/person (1800 x1.5 = 2700kwhrs/day) and drinking water at the rate of 200 lits/day/person (1800 x 200 lit/person= 360,000 lits/day).The power for a desalination plant will be 1980 kwhrs/day. The system is designed for a total power generation capacity of 4680Khwhrs/day.

The model is based on battery storage as well as based on Hydrogen storage with varying durations. Comparative analysis is shown in the figures.

The first window is based on PV solar with  2 months Hydrogen autonomy.

The third window is based on PV solar with battery storage 5 days and Hydrogen 17hrs autonomy.

The fourth and fifth window is based on PV solar with battery 12hrs and Hydrogen 17hrs storage autonomy with varying panel costs

The sixth window is based on PV solar with 172 hrs (one week) battery autonomy.

The resulting analysis indicates that a centralized Hydrogen storage with Fuel cell back up offers the most economical solution even though the power tariff is higher than a system with battery storage. The investment for long duration battery storage is almost double that of Hydrogen based solution. The cost can further be reduced if and when the Electrolyzers as well as Fuel cells are manufactured on mass scale. The added advantage with this system is it can also provide Hydrogen fuel for Fuel cell cars and boats substituting diesel. One day it may become a reality that these isolated islands can become completely self sufficient in terms of water, fuel and power with no greenhouse gas emissions. This solution can be replicated to all the islands all over the world.


The above system can also be installed in many developing countries in Africa which is an emerging market. An Africa-Australia Infrastructure Conference  will be held in Melbourne, Australia on 2-3 September  2013 and it will offer a platform for Australian companies to invest in Africa on infrastructural projects.

Majority of current power generation technologies are based on thermodynamic principles of heat and work. Heat is generated by  chemical reactions such as combustion of coal, oil or gas with air or pure oxygen. This heat of combustion is then converted into work by a reciprocating engine or steam turbine of gas turbine. The mechanical energy is converted into electricity in power generation and as a motive force in transportation. The fundamental principles remain the same irrespective of the efficiencies and sophistication we incorporated as we progressed. The efficiency of these systems hardly exceeds 30-40 of the heat input, while the remaining 60-70 heat is wasted. We were also able to use this waste heat and improved the efficiency of the system by way of CHP (combined heat and power) up to 80-85%.But this is possible only in situations where one can use both power and heat simultaneously. In a centralized power plant such large heat simply dissipated as a waste heat through cooling towers and in the flue gas. This is a huge loss of heat because a substantial part of heat of combustion is simply vented into the atmosphere in the form of greenhouse gases. If ‘greenhouse gas’ and ‘Global warming’ were not issues of concern to the world, probably we would have continued our business as usual.

Generation of heat by combustion of hydrocarbon is one example of a chemical reaction. In many chemical reactions, heat is either released or absorbed depending upon the type of reaction, whether it is exothermic or endothermic. Sometimes these chemical reactions are reversible. It may release heat while the reaction moves forward and it may absorb heat while it moves backward in the reverse direction. By selecting such reaction one can make use of such energy transformations to our advantages. One need not release the heat and then release the product of reaction into the air like burning fossil fuels.

Ammonia is one such reaction. When Hydrogen and Nitrogen is reacted in presence of a catalyst under high temperature and pressure the reaction goes forward releasing a large amount of energy as practiced in industries using Heber’s process. The heat released by this reaction can be converted into steam and we can generate power using steam cycle. The resulting Ammonia can further be heated in presence of a catalyst by external heat due to endothermic nature of the reaction and split into Hydrogen and Nitrogen.  However, such heat can be supplied only from external sources. One University in Australia is trying use the above principle by using solar thermal energy as a source of external heat. The advantage of this system is power can be generated without burning any fossil fuel or emitting any greenhouse gas. One can use a renewable energy sources such as solar thermal and also use Ammonia as a storage medium.

Ammonia is a potential source of energy to substitute fossil fuels. However, such Ammonia is now synthesized using Hydrocarbon such as oil and gas. The source of Hydrogen is from synthesis gas resulting from steam reformation of a Hydrocarbon. Hydrogen can also be derived from water using electrolysis using renewable energy source. In both the above cases, renewable energy is the key, without which no Hydrogen can be produced without a Hydrocarbon or an external heat is supplied for splitting Ammonia.

Ammonia can also be split into Hydrogen and Nitrogen using external heat.  The resulting Hydrogen can be used to generate power using a Fuel cell or run a Fuel cell car. Nitrogen also has many industrial applications.Thereoefore ammonia is a potential chemical that can substitute fossil fuels in the new emerging renewable economy.

Those who studied chemistry and conducted laboratory experiments in universities will be familiar with precautionary measures we take to avoid  accidents. Aprons, gloves, goggles and fume cub-boards with exhaust fans are some few examples of protective measures from flames, hot plates and fumes. The blue color of the flame represented the degree of hotness of the flame from Bunsen burner; the pungent smell pointed to the ‘Gas plant’ that generated ‘water gas’ for Bunsen burners. The familiar smells of chemicals would bring ‘nostalgic memories’ of college days. Each bottle of chemicals would display a sign of warning ‘Danger or Poison’. We could recognize and identify even traces of  gases or fumes or chemicals immediately. Those memories embedded deeply in our memories and I vividly remembered even after few decades I left university.

I could smell traces of Chlorine in the air even at a distance of 20 miles from a Chloroalkali plant in sixties, when air pollution controls were not stringent. People who lived around the factory probably were used to live with that smell for generations. Many families had not breathed  fresh air in their life time, because they have not breathed air without traces of chlorine.They lived all their lives in the same place because agriculture was their profession. Many people developed breathing problems during  their old ages and died of asthma and tuberclosis.The impact of these fumes cannot be felt in months and years but certainly can be felt after decades especially at old ages, when the body’s immune system deteriorates. Bhopal gas accident in India is a grim reminder of  such tragedy of chemical accidents and how they can contaminate air, water and earth and degrade human lives. But we learnt any lessons from those accidents?

During experimental thermonuclear explosion in the desert of Australia by then British army, people were directly exposed to nuclear radiation. Many of those  who saw this explosion developed some form of cancer or other later in their life .They were treated as heroes then. After several decades of this incident, many exposed to this experiment are now demanding compensation from current British government. But have we learnt any lessons from those incidents? Many politicians still advocate ‘Nuclear energy as a safe and clean energy’. Yes, until we meet with an another accident!

We human beings identified the presence of  chemicals in Nature and used them for our scientific developments. We identified fossil fuels as ‘Hydrocarbons’ and burn them to generate power and to run our cars. We emit toxic gases and fumes every second of our lives, when we switch our lights on or start our cars.Imagine the amount of gases and fumes we emit everyday all over the world by billions of people for several decades. It is a simple common sense that we are responsible for these emissions and we contaminate the air we breathe. Nature does not burn Hydrocarbons everyday or every month or every year. In fact Nature buried these Hydrocarbons deep down the earth like we bury our dead.

Can people who breathed Chlorine for decades and died of asthma or tuberculosis prove that they died due constant inhalation of Chlorine emitted by the Chloroalkali plant? The Court and Authorities will demand ‘hard evidence’ to prove that Chlorine emitted by Chloroalkli plants caused these diseases. We use science when it suits us and we become skeptics when it does not suit us. They know it is almost impossible to prove such cases in our legal system and they can get away scot-free. The same argument applies to our ‘Greenhouse gas emission’ and ‘Global warming’.

We contaminate  our air, water and earth with our population explosion, industrialization and our life styles. Yet, major industrialized countries are not willing to cut their emissions but want to carry on their ‘economic growth’. But these countries got it completely wrong. In chemical experiments, one can draw conclusions by ‘observations’ and ‘Inference’. Inference is a scientific tool and not a guess work. From overwhelming evidences of natural disasters occurring around the world one can ‘infer’ that human activities cause these disasters. Nature is now showing this by devastating ‘the business and economic’ interest of nations because that is the only way Governments can learn lessons. They don’t need ‘harder evidence’ than  monetary losses. According to recent reports:

“The monetary losses from 2011’s natural catastrophes reached a record $380 billion, surpassing the previous record of $220 billion set in 2005. The year’s three costliest natural catastrophes were the March earthquake and tsunami in Japan (costing $210 billion), the August-November floods in Thailand ($40 billion), and the February earthquake in New Zealand ($16 billion).

The report notes that Asia experienced 70 percent, or $265 billion, of the total monetary losses from natural disasters around the world—up from an average share of 38 percent between 1980 and 2010. This can be attributed to the earthquake and tsunami in Japan, as well as the devastating floods in Thailand: Thailand’s summer monsoons, probably influenced by a very intensive La Niña situation, created the costliest flooding to date, with $40 billion in losses.”

A safe and clean water supply is becoming a scarce commodity in many parts of the world. With growing   population and rapid industrialization, the demand for water has increased dramatically. This in turns pushes the demand for energy and fossil fuels resulting in further increase in global warming. According to WHO (World Health organization) specifications, a clean and safe water should be free from pathogenic organism such as bacteria and virus, and also the TDS (Total dissolved solids) levels should be below 500ppm (parts per million). Unfortunately such quality water is not readily available from surface or ground water. The water stored in catchment area for supply of drinking water to cities requires certain chemical and biological treatments before it can meet WHO specification.

In many smaller cities especially in developing countries such treated drinking water is not available. NASA’s Gravity Recovery and Climate Experiment Satellite or GRACE orbiting earth in tandem, two satellites are able to measure the water storage on ground and below across the world. The NASA data shows that most of area in Northern India will be facing a severe shortage of water in the near future because farmers are pumping ground water   at an alarming rate. The ground water is getting depleted faster than it is being replenished. The water table has gone deeper and deeper and many of the pumps they used five to ten years ago cannot pump water anymore because the water levels have gone so deep. States like Punjab, supposed to be ‘wheat bowl of India’ are facing water shortage. Farmers who have used 100 feet bore well are now digging their bore well up to 900 feet. To make the situation worse, many of coal-fired power plants are licensed to meet the increasing power demand in India. Both quantity and quality of water has a direct impact on energy demand and global warming. The rainwater which replenished the ground aquifers are unable to match the water sucked by these pumps. About 114 million people living in Rajasthan, Punjab, and Haryana including the capital city of Delhi are facing water shortage.

The likely alternative for these states is to desalinate the seawater from the west coast of India and pump them all the way to Delhi, which are thousand of kilometers from the coast. The increasing economic growth of India has increased the demand for power, often based on coal. Power industry is one of the largest users of water. Plants located on coastal are able to use seawater for their ‘once through’ cooling system and for boilers. But the plants located inland have to use only surface water like rivers. They cannot use ‘once through’ system, but use a closed circuit cooling systems where they have to store large pool of hard water.

It is a vicious cycle. Water shortage increase the demand for power and power shortage increases the demand for water. Desalination is the only alternative but it is a very energy intensive and a costly solution. Changing climate, global warming, deforestation, and water shortage are ominous signs of Nature’s fury against human greediness.

When countries like Australia set up their largest desalination facilities, the country experiences the heaviest rains in decades with flash flooding in many parts, making politicians wonder whether their water management decisions are right. Unfortunately Science cannot solve our greediness only human beings can learn lessons from Nature and take right decisions.



Nature has a wonderful way of capturing Carbon and recycling it through a process called ‘carbon cycle’ for millions of years. The greenhouse gases in the atmosphere were restricted  within certain limits when it was left to Nature. But when human being started burning fossil fuels to generate power or to run cars, the GHG emission surpassed the limit beyond a point where global warming became an issue. The GHG level has increased to 392 ppm level for the first in our long history. Many Governments and companies are exploring various ways and means to reduce greenhouse emissions to avoid global warming. Some Governments are imposing taxes on carbon emission in order to reduce or discourage such emissions. Others are offering incentives to promote alternative energy sources such as wind and solar. Some companies are trying to capture Carbon emission for sequestration.

While we try to capture Carbon and store them underground, there are many potential commercial opportunities to recycle them. This means the Carbon emission is captured and converted into a commercial fuel such as Gasoline or Diesel or Methane so that future sources of fossil fuels are not burnt anymore. But this is possible only by using ‘Renewable Hydrogen’. Hydrogen is the key  to reduce carbon emission by binding carbon molecules with Hydrogen molecule, similar to what Nature does.

When NASA plans to send a man to Mars they have to overcome certain basic issues. Mars has an atmosphere with 95% Carbon dioxide, 3% Nitrogen, 1.6% Argon and traces of oxygen, water and methane.Nasa is planning to use Carbon dioxide to generate Methane gas to be used as a fuel and also generate water by using the following reaction.

CO2 + 4H2—–CH4 + 2 H2O

2H2O——-2H2 + O2

The water is electrolyzed to split water into Hydrogen and Oxygen using solar power. The resulting Hydrogen is reacted with Carbon dioxide from Mars to generate Methane gas and water using a solid catalyst. This methanation reaction is exothermic and self sustaining. How this can be achieved practically in Mars in those conditions are not discussed here. But this is a classical example on how the Carbon emission can be tackled to our advantages, without increasing the emissions into the atmosphere. There are several methods available to convert Carbon emission in to valuable products including gasoline. The  reaction of the methane with water vapor will result in Methanol.

2H2 + CO——– CH3OH

On Dehydration, 2CH3OH —– CH3COCH3 + H2O.Further dehydration with ZSM-5 Catalyst gives Gasoline 80% C5+ Hydrocarbon. Gas to liquid by Fischer-tropic reaction is a known process.

Carbon dioxide is also a potential refrigerant to substitute CFC refrigerants that causes Ozone depletion. Carbon recycling is a temporary solution to mitigate Greenhouse gas emission till Hydrogen becomes an affordable fuel of the future. It depends upon individual Governments and their policies to make Hydrogen affordable. Technologies are available and only a political will and leadership can make Hydrogen a reality.

Environment Pollution Authority EPA of US Government regulated the gas emission standards for power plants for oxides of Nitrogen and Sulfur in the past but not for GreenHouse gas emissions into the atmosphere. However when President Obama took over power, EPA passed ‘Clean Air Act’ to regulate the emission standards of all gases including GHG for new stationary power plants. This act projected to prevent over 230,000 early deaths in US alone by 2020 due to Carbon dioxide. According to this act,

1.  Starting in January 2011, large industrial facilities that must already obtain Clean Air Act permits for non-GHGs must also include GHG requirements in these permits if these increase are newly constructed and have the potential to emit 75,000 tons per year of carbon dioxide equivalent (CO2e) or more or modify and increase GHG emissions by that amount.

2.  Starting in July 2011, in addition to facilities described above, all new facilities emitting GHGs in excess of 100,000 tons of per year CO2e and facilities making changes that would increase GHG emissions by at least 75,000 tpy CO2e, and that also exceed 100/250 tons per year of GHGs on a mass basis, will be required to obtain construction permits that address GHG emissions (regardless of whether they emit enough non-GHG pollutants to require a permit for those emissions.)

3.  Operating permits will be needed by all sources that emit at least 100,000 tons of GHG per year on a CO2e basis beginning in July 2011.

4. Sources less than 50,000 tons of GHGs per year on a CO2e basis will not be required to obtain permits for GHGs before 2016. (Sources: clean technica)

According to Stanford scientist Mark Jacobson, there is a definite link between the Carbon dioxide and increasing deaths. While the argument continues between believers of global warming and skeptics, it clear that Carbon pollution kills people without any discrimination. Any gaseous emission into the atmosphere will eventually spread across the borders of each country and becomes a global issue.

EPA in each country in the world should pass similar legislation to curb GHG emission at least to protect their people, if not to curtail global warming. What is most surprising is some scientists still want more ‘scientific data’ to accept whether GHG causes global warming or not. One need not be a rocket scientist to conclude that chemical pollution is slowly poisoning the air, water and earth. Hundreds of chemicals that we used in the past were abandoned due to their harmful effects. For example, Asbestos,DDT,Chlorine for disinfecting drinking water, coal tar dyes, Nicotine, Refrigerants like Fluorocarbon etc to name a few. We can choose to ignore the warnings of Nature and carry on the business as usual in the name of science. But we cannot ignore people claiming their legitimate rights to live and breathe a quality air to lead a normal life. It is a human right issue. It is not an issue that can be debated only by scientific community and decided.

WHO should classify ‘Quality air’ as a fundamental human right with great urgency. Governments around the world can pass ‘Clean air act’ similar to US. They may not levy carbon tax or offer new incentives to promote green energy, but regulate the indiscriminate emission of GHG into the atmosphere, which passively kills millions of people around the world. This is nothing but ‘weapons of mass destruction’ in a passive way, but on a grander scale. When ‘passive smoking’ is a serious health issue, Carbon emission too is a  serious health issue. It is the duty of industries to incorporate carbon pollution prevention measures by scientific innovations.

We live in a carbon constrained world where carbon emission is considered as the biggest challenge of the twenty-first century. We unearthed fossil fuel which Nature buried for millions of years and burnt them for our advantage to generate power and to run our cars. Scientist pointed out that the unabated emission of greenhouse will cause the globe to warm with dire consequences. However this came as an ‘inconvenient truth’ to industries and Governments around the world. The economic consequences of stopping fossil fuels weighted more than the global warming. Governments were in a precarious situation and unable to take a concrete policy decision. Popular Governments were not willing to risk their power by taking ethical decisions and opted for popular decision to keep up their growth. Then the financial crisis became an issue, which has nothing to do with greenhouse emission or global warming. Yet, the economic and industrial growth stumbled in many developed countries and unemployment skyrocketed. Governments are caught in a situation where they need to take a balanced view between an ethical decision and economic decisison.The overwhelming evidence of global warming and their consequences are slowly felt by countries around the world by natural disasters of various sizes and intensities.

Some scientist suggested that there is nothing wrong using fossil fuels; we can continue with greenhouse emission without risking the economic growth by  capturing  the carbon emission and burying  them underground. Carbon sequestration and clean coal technologies became popular and more funds were allocated to them than renewable energy development.Countires like India and China are not in a hurry to discontinue fossil fuels but continue to make massive investments on coal-fired power plants. They neither tried to capture carbon nor bury them, but continue to emit carbon claiming that it is their turn of economic growth and right to emit carbon emission. The chief of UN panel on climate change headed by an Indian has no sayin the matter.Politicians push scientists into the background when the truth is inconvenient to them.

How feasible in the carbon sequestration technology and what is the cost? Even if we can come up with a successful technology of capturing carbon and burying them underground, there will be a cost involved. This cost will invariably be passed on to the consumer which  will  eventually increase the cost of energy. Constraining carbon emission without incurring a cost can only be a dream. Capturing carbon emission is nothing new; Carbon dioxide is absorbed by solvents like MEA (Monoethanolamine) in many chemical industries. The absorbed carbon dioxide can be stripped free of solvent and the solvent can be recycled. This carbon dioxide can be treated with Ammonia to get Urea, a Fertilizer. But the source of Hydrogen can come only from renewable energy sources. That is why ‘Renewable Hydrogen ‘is the key to solve global warming problem. We can produce Urea from “captured Carbon” and ‘Renewable Hydrogen’ so that we can cut a real quantity of greenhouse emission. Carbon recycling is a sustainable solution than Carbon capturing and burying. Countries like India who depend upon import of Urea for their agriculture production should immediately make Carbon recycling into Urea production mandatory. It is a win situation for everybody in the world.

World is busy developing alternative to Fossil fuel to cut anthropic Greenhouse gas  to avoid global warming. In fact all forms of alternative energy sources except nuclear energy are ‘solar energy’ from the sun, in one form or another. Sun has supplied energy from the time earth was born. It has conducted   ‘photosynthesis’ by supplying light energy and converting atmospheric carbon dioxide and water into glucose for plants, animals and human beings. The excess carbon from the ‘Carbon cycle’ has become fossil fuels under the earth over a time. The fossil fuel is the result of sun’s energy or solar energy. We unearthed fossil fuels and burnt them to extract energy to run our power plants or run our cars. In fact fossil fuel is also a form of  ‘Biofuel’ and technically there is no difference between them except fossil fuel formation takes millions of years.Fossil fuel is nothing but a source of Hydrogen with carbon backbone.

All forms of alternative energy sources we are currently trying to develop such as PV solar, solar concentrators, solar thermal, geothermal energy, wind energy and bioenergy etc, originate from solar energy. The word alternative energy is a misnomer because all these energy are fundamentally solar energy in one form or another.

Solar energy is a radiation of Nuclear fusion  of Hydrogen taking place in the sun. Two Isotopes of Hydrogen called Deuterium (with one proton and one neutron) combine to form a Helium 3 atom and Neutron with release of large energy. Deuterium is non-radioactive and can be extracted from seawater. But this process could not be duplicated commercially for Electricity generation. It is the safest and cleanest form of energy.

In other words, all forms of energy including solar energy come from Hydrogen. That is why Hydrogen has become a potential fuel source in the future. However, developing a commercial technology for the production and usage of hydrogen at a rate cheaper than fossil fuels with zero greenhouse emission has been elusive so far. Generation of Hydrogen from water by Photo electrolysis using a direct sunlight using a Photo catalyst is a promising technology. But duplicating Nature to generate large amount of energy using tiny amount of Hydrogen atom seems to be a distance dream. Nature knows the best. We human beings can use small energy generation technologies such as solar and wind to meet our small energy needs. “There is enough to meets everybody’s need but not everybody’s greed”,Gandhi said.

Exponential growth of population and industries has forced us to look for large power generation and fuel usage at the cost of serious environmental degradation and future generations. Only smarter and cleaner technologies will help sustain the future. Politicians and policy makers  should understand various technologies and their implications than advocating short-sighted and popular energy policies.

Hydrogen has been accepted as a source of clean energy for many reasons. Hydrogen can eliminate anthropic Greenhouse Gas  into the atmosphere and stop global warming. It has high energy content than any other fossil fuels we are currently using, making it an efficient fuel. The combustion product of Hydrogen is only water which is   recyclable. Many people, Governments  and institutions around the world are trying develop  cheaper methods of generating Hydrogen from various sources both renewable as well as non-renewable. The non-renewable sources are supposed to facilitate a smooth transition from fossil fuel economy to Hydrogen economy.

However, all attempts to generate Hydrogen at a cost lower than the projected cost of $ 2.50 per kg by DOE has not been successful, even though many recent technologies are promising. Meanwhile massive investments are made on Renewable Energy including wind, solar and biological all over the world. Generating Hydrogen from water using Solid Polymer Membrane Electrolyzer is a known technology using renewable energy sources. One can easily deploy such systems for commercial applications even though it is now expensive.

Many people and institutions are also claiming ‘free energy’ sources with or without generating Hydrogen. In some cases researches are claiming an abnormal production of Hydrogen using ‘Cold plasma’ or ‘Plasma electrolysis’ of water, as much as 800% more than the theoretical values. Some companies claim low energy consumption using photo- catalyst to generate Hydrogen  using direct sunlight and water. Hydrogen generation using renewable sources is a distinct possibility to cut the cost of Hydrogen in the long run. However, the world is in hurry to develop a cheap and sustainable method of Hydrogen generation without any greenhouse gas emissions.

One US based company is claiming to have invented a new Hydrogen atom which has not been reported before in the literature. According to the inventor, this new atom of Hydrogen is called ‘Hydrino’.He has presented a detailed theory called ‘Grand Unified Theory’   that predicts catalysts that allow energy to be extracted from lower energy state of Hydrogen atom. They have demonstrated the process using a proto type in the laboratory and their claims have been validated by an independent Laboratory after conducting trial runs and analyzing the results using spectrum analysis and other techniques.

The process involves a generation of Hydrogen by using electrolysis of water. The resulting Hydrogen is then reacted with a proprietary solid catalyst developed by the company. According to the company,

“Since certain proprietary catalysts cause the hydrogen atoms to transition to lower-energy states by allowing their electrons to fall to smaller radii around the nucleus with a release of energy that is intermediate between chemical and nuclear energies, the primary application is as a new primary energy source. Specifically, energy is released as the electrons of hydrogen atoms are induced by a catalyst to transition to lower-energy levels (i.e. drop to lower base orbits around each atom’s nucleus). The lower-energy atomic hydrogen product called “hydrino” reacts with another reactant supplied to the reaction cell to form a hydride ion bound to the other reactant to constitute a novel proprietary compound. Alternatively, two hydrinos react to form a very stable hydrogen-type molecule called molecular hydrino. Thus, rather than pollutants, the byproducts may have significant advanced technology applications based on their stability characteristics. For example, hydrino hydride ions having extraordinary binding energies may stabilize a cation (positively charged ion of a battery) in an extraordinarily high-oxidation state as the basis of a high-voltage battery. Further, significant applications exist for the corresponding molecular hydrino wherein the excited vibration-rotational levels could be the basis of a UV laser that could significantly advance photolithography and line-of-sight telecommunications. A plasma-producing cell based on the extraordinarily energetic Process has also been developed that may have commercial applications in chemical plasma processing and as a light source.”

The company claims that an average generating capacity of a system will be 1000kw, with installed cost at $1000/kw with fuel cost at less than $0.001/kw with zero greenhouse emission.The solid catalyst is regenerated and recycled. The cost of Hydrogen from electrolysis becomes insignificant due to generation  of large excess thermal energy, to generate power.

The above claims are too attractive to ignore and it could be a game changer in the energy industry. The output energy is more than the theoretical values calculated,  thus violating the Law of Thermodynamics. This excess energy is attributed to the presence of ‘Hydrino’. However, one has to be open to new ideas because science is ever-changing and even well-established theories and concepts are challenged as Science evolves with new discoveries and inventions.




Bioethanol has successfully substituted Gasoline as a fuel for cars both in the form of blends with Gasoline or individually as an Anhydrous Ethanol. This  successful demonstration by Brazil opens up new generation of cars called flex-fuel cars that allow usage of various blends of Ethanol and Gasoline.Bioethanol can also be used to generate Hydrogen on site by steam reformation so that even Fuel cell cars such as Honda FCX can be felled by Bioethanol.This makes Bioethanol unique as an alternative fuel for transportation. It also facilitates on site electricity generation using Fuel cell, replacing diesel engines.

Substitution of Gasoline by  Bioethanol has several advantages over other alternative fuels. The biggest advantage with Bioethanol is, it is renewable and it allows reduction of greenhouse gases from the atmosphere and will be eligible for Carbon credit. It can be produced by both developing  as well as developed countries using  locally available agriculture produces such as cane sugar, corn, tapioca, sorghum etc. Hydrogen generated from Bioethanol is also free from Sulfur compounds normally associated with natural gas, making it an ideal fuel for Fuel cell application in cars, as well as for power generation using SOFC (solid oxide Fuel cell) or PAFC (Phosphoric acid Fuel cell).The resulting high purity Hydrogen 99.99% can be used as fuel for all type of transportation including Fuel cell Buses, scooters and even boats.

The stoichiometric reaction of steam reformation in presence of catalyst can be represented by the following chemical reaction:

C2H5OH + 3 H2O———- 6H2 + 2 CO2

The Ethanol and water mixture is preheated and the vaporized mixture is fed into a catalytic reactor. The resulting Hydrogen is contaminated with carbon monoxide. This gas mixture is separated using membrane such as Palladium to get Hydrogen with less than 50ppm CO as contaminant. Such purity is acceptable by Fuel cell such as SOFC as well as PAFC.In future a small micro-reactor for on-board reformation may be possible making Fuel cell cars with onboard liquid fuel storage.

Commercial reformers consumes about 0.88 lits of Biothanol of 96% purity to generate 1 Nm3 of Hydrogen with 60% conversion. This translates to $ 5.90 per Kg of Hydrogen. Fuel cell cars offer a mileage of 240 from 1 kg Hydrogen costing only $5.90. For on site power generation 1 kg Hydrogen generates as much as 15Kw electricity and 20Kw heat .Onsite Hydrogen generation with steam reformation also facilitates using SOFC and PAFC for high temperature power generation applications. They are ideal for CHP (combined heat and power) applications for 24×7 operations like hospitals, hotels and super markets. These fuel cells are silent in operation without any emissions except water vapor.

Governments should encourage Bioethanol production and distribution for both transportation and power generation. There is a fear that Ethanol could be diverted for potable purposes illegally depriving Governments of potential reveneues.But this can be solved by denaturing Bioethanol and making it unsuitable for potable purposes. Denaturants such Pyridine has no effect on steam reformation and number of denaturants are available. Such policies will allow the transition from fossil fuels to Hydrogen or Bioethanol.This is a simple and straight forward step any Government can take irrespective of the size or type of nation. But it requires political will, determination and leadership. Developing countries need not wait for big greenhouse emitters such as US, China and India to make a decision on their Carbon emissions but start introducing Bioethanol as fuel locally.

%d bloggers like this: