Skip navigation

Category Archives: EPA

Rise in fossil fuel usageTornadoetsunamisuper bugssealevel riseFish deathFloodingEnvironmental refugeesDraughtbushn firesPresident Obama seized his ‘moment of truth’ when he announced his decision to cut carbon emission by 30% by 2030 in USA. His decision may not be popular in USA and in many parts of the world but it is the right decision. He was able to address to some extent ‘ the inconvenient  truth’ that has nagged him during his second term in office. He  introduced his decision through EPA (Environmental protection authority) effectively bypassing congress. In fact the purpose of creating EPA was to address the environmental issues but it failed in many ways and rest of the world followed such failures time and again. This has resulted in an accumulated carbon both in the atmosphere and in the sea in an unprecedented scale causing disease and environmental degradation world-wide.

Air pollution is costing the world’s most advanced economies plus India and China $3.5 trillion per year in lives lost and ill-health, with a significant amount of the burden stemming from vehicle tailpipes, according to a report by the Organisation for Economic Co-operation and Development (OECD).

In the 34 OECD member states, the monetary impact of death and illness due to outdoor air pollution was $1.7 trillion in 2010. Research suggests that motorized on-road transport accounts for about 50 percent of that cost. In China, the total cost of outdoor air pollution was an estimated $1.4 trillion in 2010. In India, the OECD calculated the toll at $500 billion.

The costs were calculated based on survey data of how much people are willing to pay in order to avoid premature death due to ailments caused by air pollution. The method assigns a cost to the risks of emissions that decision makers can use in weighing public policy decisions.

In addition to the health cost the environmental degradation due to carbon pollution includes global warming resulting in mass extinction of species, causing  mega bush fires that are wiping out forests including rain forests, creating new bugs that are resistant to antibiotics, increasing sea level  that erodes coastal cities and submerge remote islands in pacific displacing millions of people as refugees, acidified oceans with massive extinction of species including fish stock. Such degradation is nothing but suicidal.

When a food or drug is introduced in the market it is subject to scrutiny by FDA (Food and drugs authority), but when it comes to environmental clearance to set up a coal-fired power plant or to set up a seawater desalination plant it is relatively easier to get such clearance from EPA. When  power plants emitted gaseous emissions initially EPA was able to limit the emissions of oxides of nitrogen, sulfur, phosphorous, soot and particulate matter , other organics including mercury and arsenic except carbon dioxide. Carbon dioxide has been accepted as part of the air we breathe in; otherwise no power plant could have been approved because bulk of the emissions are only carbon dioxide. Had EPA acted timely in sixties or even in seventies to curb CO2 emissions an alternative  energy  would have emerged by this time.

Industries and economics were high in the political agenda and the environment was overlooked.  Many drugs were introduced during this period to cure diseases that were actually caused by environmental pollution such as carbon dioxide. Both power industries and drug industries grew side by side without realizing that environment is degraded slowly which causes chronic diseases.

Australia is the largest consumers of power in terms of per capita consumption in the world and yet the new Government in Australia is pushing a bill in the parliament to repel Carbon tax introduced by previous Government. They are also planning to raise revenue up to $ 26 billion for medical research over a time. On one hand politicians want to freely allow unabated carbon emissions into the atmosphere and on the other hand they want to introduce new drugs that can cure diseases  actually caused by  such pollution. It is an anomalous situation created by politics of climate change. Unfortunately carbon pollution has turned into an energy related issue and attracted political attention world-wide. The high cost of cleaning carbon pollution has turned many politicians into skeptics of science on carbon pollution and climate change.

“More than 170 nations have agreed on the need to limit fossil fuel emissions to avoid dangerous human-made climate change, as formalized in the 1992 Framework Convention on Climate Change .However, the stark reality is that global emissions have accelerated (Fig. 1) and new efforts are underway to massively expand fossil fuel extraction by drilling to increasing ocean depths and into the Arctic, squeezing oil from tar sands and tar shale, hydro-fracking to expand extraction of natural gas, developing exploitation of methane hydrates, and mining of coal via mountaintop removal and mechanized long wall mining. The growth rate of fossil fuel emissions increased from 1.5%/year during 1980–2000 to 3%/year in 2000–2012, mainly because of increased coal use.” (Ref : 1)

The coal usage continues to grow especially in Asia due to expanding population and industrial growth and demand for low-cost energy.  USA is expected to achieve energy independence by 2015 which means more fossil fuels are in the pipeline. India and China are planning more coal-fired power plants in the coming decade. Australia is planning for massive expansion of coal and LNG and Coal seam methane gas for exports. Fracturing and hydrocracking of shale deposits are adding to the fuel.

Countries are more concerned with economic growth than the consequences of climate change. Despite recent warning from NASA that the depleting arctic glaciers have reached a ‘point of no return’ and the predicted sea level rise up to 10 feet is irreversible, there is a little reaction from countries across the globe.

There is a clear evidence that shows Green House Gas  emission will continue to increase in the future in spite of growing renewable energy projects because renewable solar panels, wind turbines and batteries will need more power from fossil fuels.  It is critically important to reduce carbon emission with great urgency by substituting fossil energy with renewable energy. For example, concentrated solar power (CSP) can be used instead of large-scale PV solar to reduce carbon footprint.

Solar energy is the origin of all other energy sources on the planet earth and solar energy will be the solution for a clean energy of the future. But how fast solar energy can be deployed commercially in a short span of time is a big issue. The increasing growth of fossil fuel production dwarfs the growth of renewable energy exposing the planet to catastrophic climate change. The GHG emission can be contained only by an aggressive reduction of CO2 emission into the atmosphere as well as by drastic reduction of fossil fuel production. This is possible only by using renewable Hydrogen. The cost of renewable hydrogen is high  but this is the price one has to pay to clean up the carbon pollution before the climate is  changed irreversibly. The obvious method to reduce carbon emissions is to tax carbon in such a way that it will no longer be economically viable to emit carbon to generate power or to transport. Paying carbon tax will be cheaper than paying for diseases and environmental degradation and natural disasters. Clean environment is the key for the survival of our planet and life on earth and one cannot put a price on such a life.

Ref 1:  Citation: Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F,et al (2013) Assessing ‘‘Dangerous Climate Change’’: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 8(12): e81648. doi:10.1371/journal.pone.0081648

 

 

 

Advertisements

Bio-LNG (01)Bio-LNG (02) Bio-LNG (03) Bio-LNG (04) Bio-LNG (05) Bio-LNG (07) Bio-LNG(06) Bio-LNG (08) Bio-LNG (09) Bio-LNG (10) Bio-LNG (11)

A new concept known as “hydraulic fracturing “ to enhance the recovery of land fill gas from new and existing land fill sites have been tested jointly by a Dutch and  Canadian companies. They claim it is now possible to recover such gas economically and liquefy them into Bio-LNG to be used as a fuel for vehicles and to generate power.

Most biofuels around the world are now made from energy crops like wheat, maize, palm oil, rapeseed oil etc and only  a minor part is  made from waste. But such a practice in not sustainable in the long run considering the anticipated food shortage due to climate changes.   The EU wants to ban biofuels that use too much agricultural land and encourage production of biofuels that do not use food material but waste materials. Therefore there is a need to collect methane gas that is emitted by land fill sites more efficiently and economically and to compete with fossil fuels.

There are about 150,000 landfills in Europe with about 3–5 trillion cubic meters of waste (Haskoning 2011). All landfills emit landfill gas; the contribution of methane emissions from landfills is estimated to be between 30 and 70 million tons each year. Landfills contributed an estimated 450 to 650 billion cubic feet of methane per year (in 2000) in the USA. One can either flare landfill gas or make electricity with landfill gas. But it is prudent to produce the cleanest and cheapest liquid biofuel namely “Bio-LNG”.

Landfill gas generation: how do these bugs do their work?

Researchers had a hard time figuring out why landfills do not start out as a friendly environment for the organisms that produce methane. Now new research from North Carolina State University points to one species of microbe that is paving the way for other methane producers. The starting bug has been found. That opens the door to engineer better landfills with better production management. One can imagine a landfill with real economic prospects other than getting the trash out of sight. The NCSU researchers found that an anaerobic bacterium called Methanosarcina barkeri appears to be the key microbe. The following steps are involved in the formation of landfill gas is shown in the diagram

Phase 1: oxygen disappears, and nitrogen

Phase 2: hydrogen is produced and CO2 production increases rapidly.

Phase 3: methane production rises and CO2 production decreases.

Phase 4: methane production can rise till 60%.

Phases 1-3 typically last for 5-7 years.

Phase 4 can continue for decades, rate of decline depending on content.

Installation of landfill gas collection system

A quantity of wells is drilled; the wells are (inter) connected with a pipeline system. Gas is guided from the wells to a facility, where it is flared or burnt to generate electricity. A biogas engine exhibits 30-40% efficiency. Landfills often lack access to the grid and there is usually no use for the heat.

The alternative: make bio-LNG instead and transport the bio-LNG for use in heavy-duty vehicles and ships or applications where you can use all electricity and heat.

Bio-LNG: what is it?

Bio-LNG is liquid bio-methane (also: LBM). It is made from biogas. Biogas is produced by anaerobic digestion. All organic waste can rot and can produce biogas, the bacteria does the work. Therefore biogas is the cheapest and cleanest biofuel  that can be generated without competing  with food or land use. For the first time there is a biofuel, bio-LNG, a better quality fuel than fossil fuel.

The bio-LNG production process

Landfill gas is produced by anaerobic fermentation in the landfill. The aim is to produce a constant flow of biogas with high methane content. The biogas must be upgraded, i.e. removal of H2S, CO2 and trace elements;

In landfills also siloxanes, nitrogen and Cl/F gases. The bio-methane must be purified (maximum 25/50ppm CO2, no water) to prepare for liquefaction. The cold box liquefies pure biomethane to bio-LNG

Small scale bio-LNG production using smarter methods.

•Use upgrading modules that do not cost much energy.

•Membranes which can upgrade to 98-99.5 % methane are suitable.

•Use a method for advanced upgrading that is low on energy demand.

•Use a fluid / solid that is allowed to be dumped at the site.

•Use cold boxes that are easy to install and low on power demand.

•Use LNG tank trucks as storage and distribution units.

•See if co-produced CO2 can be sold and used in greenhouses or elsewhere.

•Look carefully at the history and present status of the landfill.

What was holding back more projects?

Most flows of landfill gas are small (hundreds of Nm3/hour), so economy of scale is generally not favorable. Technology in upgrading and liquefaction has evolved, but the investments for small flows during decades cannot be paid back.

Now there is a solution: enhanced gas recovery by hydraulic fracturing. Holland Innovation Team and Fracrite Environmental Ltd. (Canada) has developed a method to increase gas extraction from landfill 3-5 times.

Hydraulic fracturing increases landfill gas yield and therefore economy of scale for bio-LNG production

The method consists of a set of drilling from which at certain dept the landfill is hydraulically broken. This means a set of circular horizontal fractures are created from the well at preferred depths. Sand or other materials are injected into the fractures. Gas gathers from below in the created interlayer and flows into the drilled well. In this way a “guiding” circuit for landfill gas is created. With a 3-5 fold quantity of gas, economy of scale for bio-LNG production will be reached rapidly. Considering the multitude of landfills worldwide this hydraulic fracturing method in combination with containerized upgrading and liquefaction units offers huge potential. The method is cost effective, especially at virgin landfills, but also at landfill with decreasing amounts of landfill gas.

Landfill gas fracturing pilot (2009).

• Landfill operational from 1961-2005

• 3 gas turbines, only 1 or 2 in operation at any time due to low gas extraction rates

• Only 12 of 60 landfill gas extraction wells still producing methane

• Objective of pilot was to assess whether fracturing would enhance methane extraction rates

Field program and preliminary result

Two new wells drilled into municipal wastes and fractured (FW60, FW61). Sand Fractures at 6, 8, 10, 12 m depth in wastes with a fracture radius of 6 m. Balance gases believed to be due to oxygenation effects during leachate and

Groundwater pumping.

Note: this is entirely different from deep fracking in case of shale gas!

Conceptual Bioreactor Design

 The conceptual design is shown in the figures.There are anaerobic conditions below the groundwater table, but permeability decreases because of compaction of the waste. Permeability increases after fracking and so does the quantity of landfill gas and leachate.

Using the leachate by injecting this above the groundwater table will introduce anaerobic conditions in an area where up till then oxygen prevailed and so prevented landfill gas formation

It can also be done in such a systematic way, that all leachate which is extracted, will be disposed off in the shallow surrounding wells above the groundwater table.

One well below the groundwater table is fracked, the leachate is injected at the corners of a square around the deeper well. Sewage sludge and bacteria can be added to increase yield further

Improving the business case further

A 3-5 fold increased biogas flow will improve the business case due to increasing

Economy of scale. The method will also improve landfill quality and prepare the landfill for other uses.

When the landfill gas stream dries up after 5 years or so, the next landfill can be served by relocating the containerized modules (cold boxes and upgrading modules). The company is upgrading with a new method developed in-house, and improving landfill gas yield by fracking with smart materials. EC recommendations to count land fill gas quadrupled for renewable fuels target and the superior footprint of bio-LNG production from landfills are beneficial for immediate start-ups

Conclusions and recommendations

Landfills emit landfill gas. Landfill gas is a good source for production of bio-LNG. Upgrading and liquefaction techniques are developing fast and decreasing in price. Hydraulic fracturing can improve landfill gas yield such that economy of scale is reached sooner. Hydraulic fracturing can also introduce anaerobic conditions by injecting leachate, sewage sludge and bacteria above the groundwater table. The concept is optimized to extract most of the landfill gas in a period of five years and upgrade and liquefy this to bio-LNG in containerized modules.

Holland Innovation Team and Fracrite aim at a production price of less than €0.40 per kilo (€400/ton) of bio-LNG, which is now equivalent to LNG fossil prices in Europe and considerably lower than LNG prices in Asia, with a payback time of only a few years.

(Source:Holland Innovation Team)

 

There is a raging debate going on around the world especially in US about the global warming and its causes, among scientists and the public alike. When IPCC released its findings on the connection between greenhouse gas emission and the global warming and its disastrous consequences, there was an overwhelming disbelief and skepticism in many people. In fact many scientists are skeptical even now   about these findings and many of them published their own theories and models to prove their skepticism with elaborate ‘scientific explanations’.   I am not going into details whether greenhouse gas emission induced by human beings causes the globe to warm or not, but certainly we have emitted billions of  tons of Carbon in the form of Carbon dioxide into the atmosphere since industrial revolution. Bulk of these emissions is from power plants fueled by Coal, oil and gas. Why power plants emit so much Carbon into the atmosphere and why Governments around the world allow it in the first place?  When the emission of Oxide of Nitrogen and Sulfur are restricted by EPA why they did not restrict Oxides of carbon? The reason is very simple. They did not have a technology to generate heat without combustion and they did not have a technology to generate power without heat. It was the dawn of industrial revolution and steam engines were introduced using coal as a fuel. The discovery of steam engines was so great and nobody was disturbed by the black smoke it emitted. They knew very well that the efficiency of a steam engine was low as shown by Carnot cycle, yet steam engine was a new discovery and Governments were willing to condone Carbon emission. Governments were happy with steam engine because it could transport millions of people and goods in bulk across the country and Carbon emission was not at all an issue. Moreover carbon emission did not cause any problem like emission of oxides of Sulfur because it was odorless, colorless and it was emitted above the ground level away from human beings. However the effect of Carbon is insidious. Similarly, power generation technology was developed by converting thermal energy into electrical energy with a maximum efficiency of 33%.This means only 33% of the thermal energy released by combustion of coal is converted into electricity. When the resulting electricity is transmitted across thousands of kilometers by high tension grids, further 5-10% power is lost in the transmission. When the high tension power is stepped down through sub stations to lower voltage such as 100/200/400V further 5% power is lost. The net power received by a consumer is only 28% of the heat value of the fuel in the form of electricity. The balance 67% of heat along with Greenhouse gases from the combustion of coal is simply vented out into the atmosphere. It is the most inefficient method to generate power. Any environmental pollution is the direct result of inefficiency of the technology. Governments and EPA around the world ignore this fact .Thank to President Obama who finally introduced the pollution control bill for power plants after 212 years of industrial revolution.  Still this bill did not go far enough to control Carbon emission in its current form. Instead of arguing whether globe is warming due to emission of Carbon by human beings or not, Scientists should focus on improving the science and technology of power generation. For example, the electrical efficiency of a Fuel cell is more than 55% compared to conventional power generation and emits reduced or no carbon. Recent research by MIT shows that such conversion of heat into electricity can be achieved up to 90% compared to current levels of 35%.Had we developed such a technology earlier, probably we will not be discussing about GHG and global warming now. MIT research group is now focusing on developing new type of PV and according to their press release: “Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Micro gap thermophotovoltaics take advantage of evanescent waves to obtain higher throughput, with the power per unit area limited by the internal blackbody, which is n2 higher. We propose that even higher power per unit area can be achieved by taking advantage of thermal fluctuations in the near-surface electric fields. For this, we require a converter that couples to dipoles on the hot side, transferring excitation to promote carriers on the cold side which can be used to drive an electrical load. We analyze the simplest implementation of the scheme, in which excitation transfer occurs between matched quantum dots. Next, we examine thermal to electric conversion with a glossy dielectric (aluminum oxide) hot-side surface layer. We show that the throughput power per unit active area can exceed the n2 blackbody limit with this kind of converter. With the use of small quantum dots, the scheme becomes very efficient theoretically, but will require advances in technology to fabricate.” Ref:J.Appl.Phys. 106,094315c(2009); http://dx.doi.org/10.1063/1.3257402 Quantum-coupled single-electron thermal to electric conversion scheme”. Power generation and distribution using renewable energy sources and using Hydrogen as an alternative fuel is now emerging. Distributed energy systems may replace centralized power plants in the future due to frequent grid failures as we have seen recently in India. Most of the ‘black outs’ are caused  by grid failures due to cyclones, tornadoes and other weather related issues, and localized distribution system with combined heat and power offers a better alternative. For those who are skeptical about global warming caused by man-made greenhouse gases the question still remains, “What happened to billions of tons of Caron dioxide emitted into  the atmosphere by power plants and transportation  since industrial revolution?”.          

Environment Pollution Authority EPA of US Government regulated the gas emission standards for power plants for oxides of Nitrogen and Sulfur in the past but not for GreenHouse gas emissions into the atmosphere. However when President Obama took over power, EPA passed ‘Clean Air Act’ to regulate the emission standards of all gases including GHG for new stationary power plants. This act projected to prevent over 230,000 early deaths in US alone by 2020 due to Carbon dioxide. According to this act,

1.  Starting in January 2011, large industrial facilities that must already obtain Clean Air Act permits for non-GHGs must also include GHG requirements in these permits if these increase are newly constructed and have the potential to emit 75,000 tons per year of carbon dioxide equivalent (CO2e) or more or modify and increase GHG emissions by that amount.

2.  Starting in July 2011, in addition to facilities described above, all new facilities emitting GHGs in excess of 100,000 tons of per year CO2e and facilities making changes that would increase GHG emissions by at least 75,000 tpy CO2e, and that also exceed 100/250 tons per year of GHGs on a mass basis, will be required to obtain construction permits that address GHG emissions (regardless of whether they emit enough non-GHG pollutants to require a permit for those emissions.)

3.  Operating permits will be needed by all sources that emit at least 100,000 tons of GHG per year on a CO2e basis beginning in July 2011.

4. Sources less than 50,000 tons of GHGs per year on a CO2e basis will not be required to obtain permits for GHGs before 2016. (Sources: clean technica)

According to Stanford scientist Mark Jacobson, there is a definite link between the Carbon dioxide and increasing deaths. While the argument continues between believers of global warming and skeptics, it clear that Carbon pollution kills people without any discrimination. Any gaseous emission into the atmosphere will eventually spread across the borders of each country and becomes a global issue.

EPA in each country in the world should pass similar legislation to curb GHG emission at least to protect their people, if not to curtail global warming. What is most surprising is some scientists still want more ‘scientific data’ to accept whether GHG causes global warming or not. One need not be a rocket scientist to conclude that chemical pollution is slowly poisoning the air, water and earth. Hundreds of chemicals that we used in the past were abandoned due to their harmful effects. For example, Asbestos,DDT,Chlorine for disinfecting drinking water, coal tar dyes, Nicotine, Refrigerants like Fluorocarbon etc to name a few. We can choose to ignore the warnings of Nature and carry on the business as usual in the name of science. But we cannot ignore people claiming their legitimate rights to live and breathe a quality air to lead a normal life. It is a human right issue. It is not an issue that can be debated only by scientific community and decided.

WHO should classify ‘Quality air’ as a fundamental human right with great urgency. Governments around the world can pass ‘Clean air act’ similar to US. They may not levy carbon tax or offer new incentives to promote green energy, but regulate the indiscriminate emission of GHG into the atmosphere, which passively kills millions of people around the world. This is nothing but ‘weapons of mass destruction’ in a passive way, but on a grander scale. When ‘passive smoking’ is a serious health issue, Carbon emission too is a  serious health issue. It is the duty of industries to incorporate carbon pollution prevention measures by scientific innovations.

%d bloggers like this: