Skip navigation

Category Archives: clean water

Battery 8hrs and Hydrogen 2 months autonomy24hrs batery storage modelBattery 10hrs and Hydrogen 17hrs autonomyBattery 8hrs and Hydrogen 2 months autonomy172 hrs (one week) battery autonomyAfrica- Australia conference

Most of the renewable energy projects that are now set up around the world are grid connected with feed-in power tariff arrangement. People can generate their own electricity by solar/wind to meet their demand and supply the surplus power to the grid at an agreed power rates. They can also draw power from the grid if there is any short fall in their production of renewable energy. It is two-way traffic. There is an opportunity for people to generate revenue by sale of surplus power. It is an incentive for people to invest on renewable energy and that is why the investment on renewable energy has steadily increased over a time. But this is not the case with many developing and under developed countries. The situation is still worse in many islands where there is no centralized power generation at all or power distribution through grids. They depend on diesel generators. Even to transport diesel from mainland they have to use diesel operated boats. They have no drinking water even though they are surrounded by sea. I happened to visit a remote island in PNG few years ago and saw the plight of those people first hand. They live in absolute poverty and nobody cares to offer them a solution. Their voices are never heard and permanently drowned in the deafening roar of the sea.

The problems of supplying clean power and water to these remote islands are not only political but also technical and commercial in nature. One has to use only commercially available systems and components which are meant for a single or three-phase grid connected power supplies. Even though renewable energy sources basically generate only direct current (DC), one has to convert them into alternate current (AC) for easy distribution and to use appliances which are designed for AC operations. Isolated communities like islands can use direct current and also use DC operated appliances because they are commercially available and they are more efficient. Anyhow most of the house appliances need DC supply and AC/DC converters are commonly used for this purpose thus sacrificing efficiency in the process. They also need better storage solutions because they are not connected to the grid and they have to necessarily store power for several days. Some of these islands are connected with inefficient wind turbines backed by diesel generators. It is an absolute necessity to incorporate a long-term storage capabilities in the system if one has to offer a continuous power and clean water. If the wind velocity is not enough (during off seasons) or if there is no sun (cloudy) for days together and if there is not enough storage capacity, then all the investment made on the project will be of no use. Any half-baked solutions will not serve the real purpose.

There are also commercial problems because a well designed system will cost more, which will eventually increase the power tariff. Unless the Government subsidizes the power   sufficiently, people cannot afford to pay for their electricity or water. It requires a careful planning and community consultations to set up a ‘stand alone renewable energy projects in islands’. Governments in the pacific islands should act with great urgency because there is also a risk of inundation by sea level rising due to global warming.

We are in the process of designing a solution to provide such islands with clean power, clean drinking water and even wireless connectivity for schools so that children can get education. It may sound ambitious but it is the first step one has to take into long journey of sustainability and self-reliance by these isolated communities. There is a good possibility that such island may one day become completely independent and self-sufficient with clean power and water.

The same solution can be implemented in other countries too. Many countries have necessary infrastructure to generate and distribute power yet they suffer regular power cuts and black outs due to inefficiencies in their system.

Our proposed solution can provide uninterrupted clean power and water because the system will have long duration centralized energy storage. We have made a detailed analysis of various alternatives available for the above purpose using Homer hybrid solution software. The solution proposes a PV solar with storage solutions using battery bank as well as Fuel cell back up. The solution also proposes a long duration of storage ranging from few hours up to a fortnight .It is a standalone system with complete energy management and suitable for remote operations. The solution can also incorporate wind turbine in addition to PV solar depending upon the site and wind velocity profile.

The model is to supply clean power and drinking water for 600 families with an average 3 people in a family. The system will supply power at the rate of 1.50kwhrs/day/person (1800 x1.5 = 2700kwhrs/day) and drinking water at the rate of 200 lits/day/person (1800 x 200 lit/person= 360,000 lits/day).The power for a desalination plant will be 1980 kwhrs/day. The system is designed for a total power generation capacity of 4680Khwhrs/day.

The model is based on battery storage as well as based on Hydrogen storage with varying durations. Comparative analysis is shown in the figures.

The first window is based on PV solar with  2 months Hydrogen autonomy.

The third window is based on PV solar with battery storage 5 days and Hydrogen 17hrs autonomy.

The fourth and fifth window is based on PV solar with battery 12hrs and Hydrogen 17hrs storage autonomy with varying panel costs

The sixth window is based on PV solar with 172 hrs (one week) battery autonomy.

The resulting analysis indicates that a centralized Hydrogen storage with Fuel cell back up offers the most economical solution even though the power tariff is higher than a system with battery storage. The investment for long duration battery storage is almost double that of Hydrogen based solution. The cost can further be reduced if and when the Electrolyzers as well as Fuel cells are manufactured on mass scale. The added advantage with this system is it can also provide Hydrogen fuel for Fuel cell cars and boats substituting diesel. One day it may become a reality that these isolated islands can become completely self sufficient in terms of water, fuel and power with no greenhouse gas emissions. This solution can be replicated to all the islands all over the world.


The above system can also be installed in many developing countries in Africa which is an emerging market. An Africa-Australia Infrastructure Conference  will be held in Melbourne, Australia on 2-3 September  2013 and it will offer a platform for Australian companies to invest in Africa on infrastructural projects.

We have used Hydrocarbon as the source of fuel for our power generation and transportation since industrial revolution. It has resulted in increasing level of man-made Carbon into the atmosphere; and according to the scientists, the level of carbon has reached an unsustainable level and any further emission into the atmosphere will bring catastrophic consequences by way of climate change. We have already saw many natural disasters in a short of span of time. Though there is no direct link established between carbon level in the atmosphere and the global warming, there is certainly enough evidence towards increase in the frequency of natural disasters and increase in the global and ocean temeperatures.We have also seen that Hydrogen is a potential candidate as a source of future energy that can effectively substitute hydrocarbons such as Naphtha or Gasoline. However, hydrogen generation from water using electrolysis is energy intensive and the source of such energy can come only from a renewable source such as solar and wind. Another issue with electrolysis of water for Hydrogen generation is the quality of water used. The quality of water used for electrolysis is high, meeting ASTM Type I Deionized Water preferred, < 0.1 micro Siemen/cm (> 10 megOhm-cm).

A unique desalination technology has been developed by an Australian company to generate on site Hydrogen directly from seawater. In conventional seawater desalination technology using reverse osmosis process only 30-40% of fresh water is recovered as potable water with TDS less than 500 ppm as per WHO standard. The balance highly saline concentrate with TDS above 65,000 ppm is discharged back into the sea which is detrimental to the ocean’s marine life. More and more sweater desalination plants are set up all over the world to mitigate drinking water shortage. This conventional desalination is not only highly inefficient but also causes enormous damage to the marine environment.

The technology developed by the above company will be able to recover almost 75% of fresh water from seawater and also able to convert the concentrate into Caustic soda lye with Hydrogen and Chlorine as by-products by electrolysis. The discharge into the sea is drastically reduced to less than 20% with no toxic chemicals. This technology has a potential to revolutionize the salt and caustic soda industries in the future. Caustic soda is a key raw material for a number of chemical industries including PVC.Conventionally, Caustic soda plants all over the world depends on solar salt for their production of Caustic soda.Hydrogne and Chlorine are by-products.Chlrine is used for the production of PVC (poly vinyl chloride) and Hydrogen is used as a fuel.

In the newly developed technology, the seawater is not only purified from other contaminants such as Calcium, Magnesium and Sulfate ions present in the seawater but also concentrate the seawater almost to a saturation point so that it can be readily used to generate Hydrogen on site. The process is very efficient and commercially attractive because it can recover four valuable products namely, drinking water, Caustic soda lye, Chlorine and Hydrogen. The generated Hydrogen can be used directly in a Fuel cell to generate power to run the electrolysis. This process is very ideal for Caustic soda plants that are now located on seashore. This process can solve drinking water problems around the world because potable water becomes an industrial product. The concentrated seawater can also be converted in a salt by crystallization for food and pharmaceutical applications. There is a growing gap between supply and demand of salt production and most of the chemical industries are depending upon the salt from solar pans.

Another potential advantage with this technology is to use wind power to desalinate the water. Both wind power and Hydrogen will form a clean energy mix. It is a win situation for both water industry and the environment as well as for the salt and chemical industries. In conventional salt production, thousands of hectares of land are used to produce few hundred tons of low quality salt with a year-long production schedule. There is a mis match between the demand for salt by large Caustic soda plants and supply from primitive methods of solar production by solar evaporation contaminating cultivable lands.

The above case is an example of how clean energy technologies can change water, salt and chemical industries and also generate clean power economically, competing with centralized power plants fuelled with hydrocarbons. Innovative technologies can solve problems of water shortage, greenhouse gases, global warming, and environmental pollution not only economically but also environmental friendly way. Industries involved in seawater desalination, salt production, chemical industries such as Caustic soda, Soda ash and PVC interested to learn more on this new technology can write directly to this blog address for further information.

A safe and clean water supply is becoming a scarce commodity in many parts of the world. With growing   population and rapid industrialization, the demand for water has increased dramatically. This in turns pushes the demand for energy and fossil fuels resulting in further increase in global warming. According to WHO (World Health organization) specifications, a clean and safe water should be free from pathogenic organism such as bacteria and virus, and also the TDS (Total dissolved solids) levels should be below 500ppm (parts per million). Unfortunately such quality water is not readily available from surface or ground water. The water stored in catchment area for supply of drinking water to cities requires certain chemical and biological treatments before it can meet WHO specification.

In many smaller cities especially in developing countries such treated drinking water is not available. NASA’s Gravity Recovery and Climate Experiment Satellite or GRACE orbiting earth in tandem, two satellites are able to measure the water storage on ground and below across the world. The NASA data shows that most of area in Northern India will be facing a severe shortage of water in the near future because farmers are pumping ground water   at an alarming rate. The ground water is getting depleted faster than it is being replenished. The water table has gone deeper and deeper and many of the pumps they used five to ten years ago cannot pump water anymore because the water levels have gone so deep. States like Punjab, supposed to be ‘wheat bowl of India’ are facing water shortage. Farmers who have used 100 feet bore well are now digging their bore well up to 900 feet. To make the situation worse, many of coal-fired power plants are licensed to meet the increasing power demand in India. Both quantity and quality of water has a direct impact on energy demand and global warming. The rainwater which replenished the ground aquifers are unable to match the water sucked by these pumps. About 114 million people living in Rajasthan, Punjab, and Haryana including the capital city of Delhi are facing water shortage.

The likely alternative for these states is to desalinate the seawater from the west coast of India and pump them all the way to Delhi, which are thousand of kilometers from the coast. The increasing economic growth of India has increased the demand for power, often based on coal. Power industry is one of the largest users of water. Plants located on coastal are able to use seawater for their ‘once through’ cooling system and for boilers. But the plants located inland have to use only surface water like rivers. They cannot use ‘once through’ system, but use a closed circuit cooling systems where they have to store large pool of hard water.

It is a vicious cycle. Water shortage increase the demand for power and power shortage increases the demand for water. Desalination is the only alternative but it is a very energy intensive and a costly solution. Changing climate, global warming, deforestation, and water shortage are ominous signs of Nature’s fury against human greediness.

When countries like Australia set up their largest desalination facilities, the country experiences the heaviest rains in decades with flash flooding in many parts, making politicians wonder whether their water management decisions are right. Unfortunately Science cannot solve our greediness only human beings can learn lessons from Nature and take right decisions.



Renewable Hydrogen is the key that can offer us energy independence in the twenty-first century. Fossil fuel usage will still continue for some more time because the world has already invested massively on fossil fuel infrastructures. The stacks are too high for them to switch over to renewable over night. It is the Mother Nature who provided us coal, oil and gas all these years using her manufacturing process under the earth over millions of years. But we human beings exceeded her tolerance limit by emitting greenhouse emission by our rapid growth in population and industrialisation.We failed to discover an alternate fuel in time and continued with an age-old technology with all its inefficiencies. Inefficiencies breed pollution. We were keen to use the heat of combustion by burning a fossil fuel to generate electricity or drive our cars, but paid no attention to the gases released during such combustion. We learnt Thermodynamics and the relationship between heat and work, but failed to understand the consequences of gases of combustion and its impact on our environment.

There are two issues involved in burning a fossil fuel to generate electricity. The heat of combustion is an exothermic reaction and we get a certain amount of heat. Then we convert this heat energy into electrical energy and the overall efficiency of such conversion is about thirty-five percent. Only thirty-five percent of the heat input energy becomes electrical energy and the remaining sixty-five percent heat along with gases of combustion are released into atmosphere. Of course part of this heat is recovered in a commercial plant, but the bulk of heat is released into the atmosphere as greenhouse gases. We failed to understand the potential of Hydrogen even though we used Hydrocarbon for several decades. We even discovered Urea, the fertilizer that caused ‘green revolution’ in agriculture, using the same Hydrogen present in the Hydrocarbon feedstock. It is time for us to make best use of a fossil fuel to its most potential when we burn each kilogram of fuel. We should burn coal not just with air but also with steam so that we can generate Hydrogen rich gas that can run a gas turbine in a combined cycle or run our cars on roads. Such a conversion will lead to a substantial increase in energy efficiency as well as in greenhouse gas emission reduction. Governments in industrialized countries should make it a mandatory to convert all their power plants to syngas generation as described above. They should also discourage new plants using fossil fuels with punitive power tariffs and encourage renewable energy projects with higher tariffs. Governments can also impose similar tariffs for transportation depending upon the fuel used such as fossil fuel or Hydrogen.

Governments should encourage renewable energy projects such as solar and wind   to generate Hydrogen from water as centralized power plants and distribute DC (direct current) by rural electrification. If the country side is electrified using this system then, agriculture, business and industries can thrive in rural areas. Direct current (DC) distribution net work can be installed in rural areas and encourage people to use energy-efficient appliances such as Direct current air-conditioners with energy star ratings and tariffs. Governments can bring about these changes by adopting a ‘carrot and stick ‘policy to encourage renewable and discourage fossil fuels.

Solar energy is the key from which all other forms of energy emanate such as wind, geothermal and ocean thermal energy conversion system.  It is of paramount importance to increase the efficiency of renewable systems and improve energy efficiencies of appliances we use. It is simpler to use LED bulbs using a Direct current generated by Renewable Hydrogen. It is once again the Mother Nature that can come to the rescue of human beings through solar, wind and water to generate clean energy for the twenty-first century.

Energy generation and distribution is no longer a business or revenue issue but a moral and ethical issue for Governments. It is only people who can bring about such sweeping changes by electing the right Government who can care for the environment. The future generation will judge us only based on what kind of environment we leave them behind.

This article provides an overview on Hydrogen cars and how we can generate renewable hydrogen to fuel these cars. There are two well-known brands of Hydrogen based cars already in the market, BMW7 and Honda FCX Clarity models.

BMW7 works on Hydrogen Internal Combustion engine fuelled by Liquid Hydrogen. It is a 6 Liters V12 engine with 191Kw capacity and 390 N of torque. It offers 100km from 50 Liters of Liquid Hydrogen with a density of about 70-80gms/lit and offers 100kms from Gasoline of 16.7 liters. It has a capacity of 170 liters for liquid Hydrogen storage at the rear end of the car. It can run both on Hydrogen as well as on Gasoline. Liquid hydrogen has a better power density but liquefaction is a cryogenic technology and consumes power for liquefaction. The storage tank also is of special construction because Liquid Hydrogen is stored at -253C.

Honda FCX Clarity car is fuel cell car fuelled by compressed Hydrogen gas. It offers 100kms for 3.5 lits of Hydrogen (at 5000 psi pressure with density at 30gms/lit.). It has Hydrogen storage of 3.92kgs kgs with a total mileage of 240miles. Increasing Hydrogen storage gas pressure up to 10000psi, the Hydrogen power density is considerably increased making it comparable with liquid Hydrogen. Moreover fuel cell car is silent while driving because there is no combustion engine.
BMW is able to use their existing conventional internal combustion engine with slight changes suitable for Hydrogen so that they can use their existing infrastructure. But Honda FCX uses proton exchange membrane Fuel cell. It is an electrochemical device that converts Hydrogen into electricity which runs the motor for transmission of power. It is similar to an electric car in which power is stored in batteries and used to drive the motor for transmission. The only difference is the power is generated in Fuel cell car as and when hydrogen is supplied whereas in Electric cars, power is drawn from stored energy from the battery.

We can inject pure Hydrogen along with Gasoline, CNG or LPG to assist the combustion to save fuel consumption up to 30% and to reduce harmful emissions. The conventional gasoline cars can be fitted with water electrolyzer to generate Hydrogen using the car battery. The electrolyzer currently sold in the market is quite different. They generate ‘water gases’ and not pure Hydrogen. They electrolyze water using pulsating DC current which essentially breaks down water into Hydrogen and oxygen molecules. The complete mixture of Hydrogen, Oxygen and undissociated water molecules are injected into fuel manifold of the car. The hydrogen will assist in the process of combustion to certain extend and help save the fuel consumption of gasoline.

Renewable Hydrogen is a potential source for fuelling automobiles. One can use solar panels and simple tap water to generate hydrogen gas and store them under high pressure in cylinders. We will be releasing an eBook in the near future to design a suitable Renewable Hydrogen system and install them at homes and businesses for power generation as well as to fuel two-stroke engines such as scooters and bikes. Initially the book will offer DIY kits to design and install power generation for homes and businesses up to 10Kw capacity electricity generation. We will be conducting trials on two-stroke engines using renewable Hydrogen to get approvals from proper transport authorities for safety and usage on Indian roads.

Hydrogen can be safely handled as long as we take appropriate safety measures as we normally do while handling petroleum products like gasoline or butane gas. It may look like a daunting task to fuel a car with Hydrogen gas but in reality, all necessary equipment and systems are commercially available including High pressure Carbon fiber tanks fully tested and approved.

Water makes up 71% of the planet earth and it is the most potential energy source of the future. Water is a product of combustion between Hydrogen and Oxygen, two most abundantly available elements and   vital for life on earth. The bondage between Hydrogen and Oxygen is so strong that it requires a certain amount of energy to separate them. Separation of Hydrogen and Oxygen using the process of Electrolysis is a well-known technology. Separation of water by high temperature using Thermolysis has also been studied.  In both the processes the separation of Hydrogen and Oxygen after decomposition is a key step because of the strong affinity between the two elements. Hydrogen has to be separated in a pure form without any trace of Oxygen. Currently most of Hydrogen is generated commercially by steam reforming natural gas because of its easy availability as piped gas in many developed countries. Moreover steam reforming is a well established commercial technology that has been used for decades in chemical process industries. The hydrogen resulting from steam reforming is acceptable for combusting in Hydrogen internal combustion engines but not pure enough for a Fuel cell car. Any trace of impurity from natural gas such as Sulfur or Mercaptans can potentially poison the catalyst used in fuel cell which is very expensive. Hydrogen with purity less than 99.99% is not recommended for Fuel cell applications.

Currently there are few issues to be addressed before Hydrogen becoming a commercial fuel. The energy required to separate Hydrogen from water by commercial electrolysis is about 6Kws (kilowatts) to generate 1 m3 (cubic meter) of Hydrogen. Two key factors for electrolysis are purity of water and  direct current source. Water of certain purity is a critical part for Hydrogen generation. Deionized water with electrical conductivity less than 0.10 micro Siemens/cm is required. Normal drinking water conductivity is less than 100micro Siemens/cm. The potable water can be deionized with reverse osmosis system to get necessary quality. In fact both high purity water and direct current are not commercially available. A renewable energy sources such as solar or wind that generates direct current can be used for electrolysis. This will drop batteries and rectifier that we normally use in renewable energy systems. The generated Hydrogen can be stored in cylinders under high pressure. The stored hydrogen is the stored energy that can be used as and when required.  We can use the stored Hydrogen to generate electricity to meet our power requirement whether it is a home or business or industry. The major advantage with this system is that we can generate power when we need and we don’t have to depend on the grid power. We can also export surplus power to the grid. In fact all DC appliances can be connected with DC power from Fuel cell and operated to improve the efficiency. Such a system is ideal for remote locations without any grid supply such as remote villages or islands.

The same stored Hydrogen can also be used as fuel for a car whether it is a combustion engine or a Fuel cell car. Hydrogen can be compressed and stored under high pressure. Alternatively, Hydrogen can be stored using metal hydrides in smaller volumes. Honda introduced the first fuel cell car in the market in 1999. Since then they have made considerable improvements. Honda FCX Clarity, sedan offers a mileage of 270 miles for a single cylinder of Hydrogen at 5000 psi pressure. They are introducing a latest model with Hydrogen pressure at 10,000 psi which will considerably improve the mileage further. Unlike Hybrid cars, Fuel cell cars run silently and experts who have test-driven the car are very much impressed with the performance. Similarly Ford introduced Hydrogen combustion engine 6.8 liters V-10 engine to power E-450 Hydrogen shuttle bus. Ford modified their Gasoline engine to suit Hydrogen fuel.

Substituting Gasoline with Hydrogen is no longer a theory but a commercial reality. More and more research is being undertaken to improve the performance. Currently the cost of Hydrogen cars and Hydrogen fuel is expensive, due to lack of infrastructures to manufacture such cars or to distribute Hydrogen. However these cars will soon replace gasoline cars. Similarly homes and business can generate their own electricity for their daily use using stored Hydrogen. Water will become the fuel of the future and Hydrogen will clean up the air that has been heavily polluted by fossil fuels for decades.

Renewable energy is one of the fastest growing energy sources of our times. But still there are many obstacles to overcome, before it can substitute current methods of electricity generation using fossil fuels, or substitute petrol in cars. The main obstacle is, the intermittent and unpredictable nature of renewable energy sources, such as wind and solar. Wind blows only certain seasons of the year and then wind velocity fluctuates widely in a day. Similarly sun shines only certain hours in a day and the intensity of radiation varies widely in a day. The wind velocity and sun’s radiation intensity are critical components in designing a reliable energy system. It is an anomalous situation, when we need power, there is no sun or wind; when sun shines or wind blows, we may not need any power. How to overcome this anomaly? That is the key, in successfully deploying renewable energy technologies.

Currently we are using batteries to store the energy. When there is a wind with reasonable velocity or sunshine with reasonable radiation intensity, we can generate power and store them in batteries. The wind velocity should be above certain threshold limit, say such as, a least wind velocity of 3mts/sec for amount of hours, while designing a wind based energy system. The same principle applies to solar energy and we need certain minimum solar   intensity and several hours. But in reality, we don’t get these minimum operating parameters, which make the design of a renewable system more complicated.

Batteries can accumulate these small energy generations by intermittent sources of wind and sun, and store them. But these batteries have certain life between 3-5 years and requires regular maintenance, replacements.They also have certain charging and discharging cycles and limitations. At the end of its life, it has to be disposed carefully because these batteries are made of lead and acid, which are toxic materials. Many companies are trying to introduce better technologies such as ‘flow batteries’. But experience shows that such batteries are confined to only smaller capacities. Large scale storage is expensive and sometimes it is not economically feasible. Lithium-ion batteries are more efficient than Lead-acid batteries, but they are more expensive so the renewable energy projects become expensive and cannot compete with conventional fossil fuels, in spite of higher tariffs offered by Government as incentives. Moreover the demand for Lithium-ion batteries will increase substantially in the future, as more and more Electric cars are produced. But lithium sources are limited and it is not sustainable.

The best option to develop renewable energy systems is to generate Hydrogen using renewable energy and store them, instead of storing them in batteries. We can use stored Hydrogen to generate power, or use as fuel for the car, as and when we need. There are no maintenance or disposal problems with Hydrogen storage, when comparing with batteries. Hydrogen generators (electrolyzers) can generate Hydrogen when the intermittent power flows from wind or sun. They can run from a range of capacities from 5 to 100% of rated capacity and they are more suitable for renewable energy sources. But there will be a loss of energy, because the amount of power required to generate Hydrogen, is more than the power generated from the resulting Hydrogen by a Fuelcell.The initial cost will be higher, but it will give operational flexibility with least maintenance, and even adoptable to remote sites. Technology is improving to cut the cost of fuel cells and electrolyzers so that Hydrogen based renewable energy will become a sustainable source of energy in the future. Hydrogen is the only solution that can solve both power generation and transportation problems the world is currently facing.

%d bloggers like this: