Skip navigation

Category Archives: Carbon pollution

Automobile industry has come a long way since the time of Henry Ford. The internal combustion engine that drives the modern car is slowly but steadily evolving into an emission free engine. The carbon pollution has caused globe to warm and changed the climate and also caused respiratory illness for millions of people around the world for decades. The Carbon pollution was completely ignored in the past while other design features of the car have undergone massive changes. However, when the smog and deteriorating air quality of Delhi and Beijing was beamed around the world in our TV sets, people realized how vulnerable they are to carbon pollution.

But how to eliminate the Carbon emission from our automobiles?

1.The simple answer is to substitute the fossil fuels we use every day such as Petrol and Diesel with Carbon free fuel such as Hydrogen.  Hydrogen being a light gas it has to be compressed and liquefied so that it can occupy less space. However, it requires a special ‘cryogenic tank’ to store liquid Hydrogen at – 253 C. BMW has already produced a commercial vehicle and it is in the market. However, the Hydrogen dispensing stations are limited in numbers. It uses existing internal combustion engine suitably modified for Hydrogen fuel so that they can use existing infrastructure that produces their petrol engines. There is no carbon emission except for water vapour. However, Hydrogen should be generated using renewable energy sources such as solar or wind. Hydrogen generated by reformation of natural gas will still have a Carbon foot print. It can be classified as a Carbon free car depending upon how Hydrogen is generated. However, producing liquid hydrogen or filling in a cryogenic tank is not commercially feasible for individual household. Hydrogen supply will have to be a centralized filling station. BMW has recently focussing their attention towards Fuel cell car. While those early vehicles were fun to drive, they suffered from the inefficiencies of super-cooling the liquefied hydrogen, and the hydrogen vaporizing in storage. Around the turn of the century, BMW began to research the hydrogen-powered, fuel-cell electric vehicle as an alternative to the hydrogen-powered combustion engine.

2.The other alternative is to substitute fossil fuel with compressed Hydrogen that generates an electric power using Fuel cell that drives the motor and the car. Here both fossil fuel and internal combustion engine are substituted with Hydrogen fuel and Fuel cell. This is a marked deviation from a conventional car. Honda of Japan was the first to introduce a commercial car using a Fuel cell. It uses compressed Hydrogen at 70 Mpa pressure that supplies Hydrogen to PEM (proton exchange membrane) Fuel cell that generates power that drives the motor and the car. There is no emission except for water vapour. The car runs smoothly and silently because there is no mechanical engine or moving part. It is truly a Carbon free car if the Hydrogen is generated from a renewable energy source such as solar or wind. It is ideal for houses with roof top solar panels. However, one has to install a water purifier, an electrolyser, a compressor and a compressed tank for Hydrogen storage. If the Hydrogen is generated by steam reforming of Natural gas, then it will have a Carbon footprint and cannot be classified as carbon free car. Generation of Hydrogen using roof top solar panel, electrolysis and compression is possible by individual households but it involves still some risk due to the explosive nature of Hydrogen. A centralized Hydrogen dispensing is still a safer method.  Toyota Mirai Fuel cell car is a new model introduced by Toyota motor Co of Japan. It too has certain additional features such as a power generator for a remote households or camp.

2.The third alternative is to eliminate fuel as well as the engine completely; instead supply power to the motor from a storage battery. Here there is no emission or noise because there is no engine or moving parts similar to Fuel cell car. However, the battery is heavy and occupies a large space and it requires frequent charging from an external power source. The power often comes from the main power grid which carries the power generated from a power station which invariably uses fossil fuel. Though there is no Carbon emission from the electric car it still has Carbon footprint. However, if the power is generated from a renewable energy source such as solar and wind then it can be classified as Carbon free car. It is ideal for houses with roof top solar panels. However, it should be connected to the power grid in parallel. Alternatively, it can be connected to a storage battery if there is no grid.

The Lithium ion battery pack in Tesla Roadster weighs 990 pounds, stores 56 kWh of electric energy, and delivers up to 215 kW of electric power. Tesla battery packs have the highest energy density in the industry. To achieve this energy density, Tesla starts with thousands of best-in-class Lithium-ion cells and assembles them into a liquid-cooled battery pack, wrapped in a strong metal enclosure. The battery is optimized for performance, safety, longevity, and cost. The cells used in a Roadster employ an ideal chemistry for electric vehicles

Nickel Metal Hydride (NiMH) batteries are commonly used in hybrid cars. However, a 56 kWh NiMH battery pack would weigh over twice as much as the Roadster battery. Instead, Tesla uses Li-ion battery cells which dramatically decrease the weight of the Roadster pack and improve acceleration, handling, and range.

With Lithium-ion chemistry, there is no need to drain the battery before recharging – there is no “memory effect”. Roadster owners simply “top-off” each night

Each of the above cars have their own advantages and disadvantages. However, Fuel cell cars have certain advantages over Electric cars in spite of the advancement in battery technology primarily due to the weight of the battery and frequency and time required to charge the battery. Fuel cell car has a capacity to store Hydrogen fuel as well as to generate power onsite and this advantage will go a long way to make fuel cell cars truly carbon free not only for transportation but also for stationery power generation in remote locations.

A large scale deployment of renewable energy generation such as solar and wind around the world can deliver a Car that is truly carbon free. However fossil fuel power generation will continue for years to come as the new technologies are developed to generate power using fossil fuel without emitting Carbon emission such as Carbon recycling. The real winner of the car race will depend upon how a Carbon emission free power generation technology will emerge in the future. Whatever may the power technology Fuel cell be here to stay and if a cheap alternative catalyst is developed for Fuel cell then the race will be well and truly on.(Ref : BMW,Honda,Toyota and Tesla Roadster websites)

 

“The method adopted in Vedanta to impart the knowledge of Brahman is known as the method of superimposition (adhyaaropa) and subsequent negation (apavaada). In the Bhashya, Bhagavatpada says, “The transmigrating self is indeed Brahman. He who knows the self as Brahman which is beyond fear becomes Brahman. This is the purport of the whole Upanishad put in a nutshell. It is to bring out this purport that the ideas of creation, maintenance and dissolution of the universe, as well as the ideas of action, its factors and results were superimposed on the Self. Then, by the negation of the superimposed attributes the true nature of Brahman as free from all attributes has been brought out. This is the method of adhyaaropa and apavaada, superimposition and negation, which is adopted by Vedanta.”  (Ref: What are Upanishads? : An over view by S.N. Sastri on Luthur.com)

The analogy that is often used to describe the process of superimposition and negation is that of ‘using a thorn to remove a thorn’. Finally, when the last thorn is removed, the thorn used to remove it is thrown away as well. Similarly, Carbon can be used to reduce carbon emission while power is generated!

Let us consider the issues of Carbon emission and global warming resulting in climate change in the above context. Recent conference in Climate change held in Paris is acclaimed to be a success to the planet earth collectively adopted by 195 countries both developed and developing. In a nutshell they all have agreed to reduce their carbon emissions to limit the global warming to less than 2C or even 1.5 between 2030 and 2050. Is it really practical to achieve the above target given the nature of reduction and the complexity of imposing such a reduction within the time frame? It is a big question mark.

The only practical method to reduce CO2 is by using Hydrogen CO2 + H2-à CO + H2O and then convert CO into a useful product such as Urea NH2CONH2 a fertilizer. Production of Urea requires additional Hydrogen which is again obtained by combustion of fossil fuel resulting in CO2 emission. Moreover, CO2 will eventually be released at the point of usage of urea later. While trying to reduce Carbon emission one will end up with more Carbon emission in the atmosphere.

The carbon emission from power plants can be substituted with renewable energy sources such as wind and solar at a very high cost but how the emissions from chemical plants such as urea or from automobile emissions, steel plants and cement plants be contained? We should also remember that silicon wafer to produce solar panels consume large amount of power which now comes invariably from fossil fuels. There is a long list of such plants emitting Carbon every day from all over the world.

But there is a possibility to reduce emissions substantially by converting CO2 emissions from power plants into a synthetic fuel which can then substitute fossil fuel to continue power generation. The CO2 resulting from combustion of synthetic fuel will be recycled in the same manner mentioned above thus completing a cycle. To convert CO2 into a synthetic fuel we will require Hydrogen either by renewable sources or non-renewable sources. The non-renewable sources for Hydrogen cannot be a long term solution but renewable Hydrogen is very expensive at this stage. Therefore, Hydrogen is the only source which will not only help reduce Carbon emissions but also help eliminate Carbon completely from planet earth. Renewable Hydrogen is the key to decarbonize the planet earth. However, it may be possible to decarbonize the planet temporarily by using Hydrogen derived from fossil fuel without emitting CO2! It is not just a theory but practical because the technology has already been tested! In this process the Carbon will remain in the loop where it will neither be buried nor emitted into the atmosphere but constantly recycled.

 

 

Sustainability can be defined as the ability to meet present needs without disturbing Nature’s equilibrium by a holistic approach while not compromising the ability of the future generation to continue to meet their needs. Holistic is “Characterized by the belief that the parts of something are intimately interconnected and explicable only by reference to the whole” (Wikipedia). Mathematically and scientifically any exponential growth or consumption will not be sustainable and such growth will eventually be curtailed by forces of Nature. Unfortunately current models of sustainability do not take a holistic approach but focus only on a continuous growth or expansion to meet the demands of the growing human population thus disturbing the Nature’s equilibrium. The holistic approach is essential because our world is interconnected and any isolated growth or development in one part of the world will affect the other part of the world. Such a growth is counter-productive to human civilization as a whole. At the same time Nature’s equilibrium is critical for the survival of humanity and science should take into account this critical issue while developing solutions to problems. Otherwise such a solution will not be sustainable in the long run.

Nature maintains a perfect equilibrium (dynamic equilibrium) while maintaining reversibility. Both are intricately linked. If the equilibrium is not maintained then it becomes an irreversible process and the entropy of such a system will only increase according to the second law of thermodynamics. The order will become disorder or lead to chaos. Moreover any human interference to nature’s irreversibility and equilibrium by human beings will need energy. Any energy generation process within the system will not be holistic and therefore will not be sustainable.

For example, reverse osmosis (RO) is a major industrial process now used to desalinate sea water/brackish water to potable water. This process is reversing the Nature’s osmotic process by applying a counter pressure over and above the osmotic pressure of the saline water using high pressure pump. This requires energy in the form of electrical energy or thermal energy in the case of distillation. When such energy is generated by burning fossil fuel then the entropy increases because combustion of fossil fuel is an irreversible process. It is clearly not sustainable.

Energy is directly connected with economic growth of the world, but Governments and industries failed to adopt a holistic approach while generating energy by simply focusing only on economic growth. The fossil fuel power generation has resulted in the accumulation of GHG in the atmosphere and in the ocean changing the climate. Power generation by nuclear plant (Fukushima) has spilled radiation into the ocean and has crossed the Pacific Ocean to shores of North America. These are irreversible changes. The human and economic costs from such pollution will easily dwarf the ‘the economic growth’ of the world. It is not holistic because the emissions caused by one country affects the whole world; then it becomes the right of an individual to object to such pollution and it is the obligation of the Governments, United Nations and the industries to protect people from such pollution. Right now all these agencies are helplessly watching the deteriorating situation because they do not have the solution or means to reverse the situation whether it is an advanced country or a poor country; we always measure growth only by income and not by the quality of air we breathe in or water we drink or the environment we live in.

The demand for energy and water are constantly increasing all over the world; and we are trying to meet these demands by expanding existing power plants or by setting up new plants. When we generate power using fossil fuel the heat energy is converted into electrical energy and the products of combustion are let out into the atmosphere in the form of CO2 and Oxides of Nitrogen. It is an irreversible process and we cannot recover back the fossil fuel already burnt. Similarly the electricity generated once used to do some useful work such as lighting or running a motor etc cannot be recovered back.  The process of electricity generation as well as usage of electricity is irreversible. Similarly when it rains the water percolates into the ground dissolving all the minerals, sometimes excessively in some places making it unsuitable to drink or irrigate. This process can be reversed but it again requires energy.

Both the above processes are irreversible and thermodynamically they will increase the entropy of the system. Any energy generation process will have cost implications and therefore irreversibility and entropy are directly linked with economics. Fortunately renewable energy sources offer hope to humanity. Even though the entropy is increased due to its irreversible nature there is no depletion of energy (sun shines everyday). Only Nature can come to human rescue to our sustainability. Science and powerful economies cannot guarantee sustainability irrespective of the size of the budget. There is a myth that billions of dollars can reverse the irreversibility with no consequences.

It raises question on the very basis of science because science depends on “observation and reproducibility” as we know. The biggest question is: “Who is the Observer and what is observed”? When sages of the East such as Ramana Maharishi raises this question, the Science has clearly no answer and the world is blindly and inevitably following the West to the point of no return.

 

.

 

 

Rise in fossil fuel usageTornadoetsunamisuper bugssealevel riseFish deathFloodingEnvironmental refugeesDraughtbushn firesPresident Obama seized his ‘moment of truth’ when he announced his decision to cut carbon emission by 30% by 2030 in USA. His decision may not be popular in USA and in many parts of the world but it is the right decision. He was able to address to some extent ‘ the inconvenient  truth’ that has nagged him during his second term in office. He  introduced his decision through EPA (Environmental protection authority) effectively bypassing congress. In fact the purpose of creating EPA was to address the environmental issues but it failed in many ways and rest of the world followed such failures time and again. This has resulted in an accumulated carbon both in the atmosphere and in the sea in an unprecedented scale causing disease and environmental degradation world-wide.

Air pollution is costing the world’s most advanced economies plus India and China $3.5 trillion per year in lives lost and ill-health, with a significant amount of the burden stemming from vehicle tailpipes, according to a report by the Organisation for Economic Co-operation and Development (OECD).

In the 34 OECD member states, the monetary impact of death and illness due to outdoor air pollution was $1.7 trillion in 2010. Research suggests that motorized on-road transport accounts for about 50 percent of that cost. In China, the total cost of outdoor air pollution was an estimated $1.4 trillion in 2010. In India, the OECD calculated the toll at $500 billion.

The costs were calculated based on survey data of how much people are willing to pay in order to avoid premature death due to ailments caused by air pollution. The method assigns a cost to the risks of emissions that decision makers can use in weighing public policy decisions.

In addition to the health cost the environmental degradation due to carbon pollution includes global warming resulting in mass extinction of species, causing  mega bush fires that are wiping out forests including rain forests, creating new bugs that are resistant to antibiotics, increasing sea level  that erodes coastal cities and submerge remote islands in pacific displacing millions of people as refugees, acidified oceans with massive extinction of species including fish stock. Such degradation is nothing but suicidal.

When a food or drug is introduced in the market it is subject to scrutiny by FDA (Food and drugs authority), but when it comes to environmental clearance to set up a coal-fired power plant or to set up a seawater desalination plant it is relatively easier to get such clearance from EPA. When  power plants emitted gaseous emissions initially EPA was able to limit the emissions of oxides of nitrogen, sulfur, phosphorous, soot and particulate matter , other organics including mercury and arsenic except carbon dioxide. Carbon dioxide has been accepted as part of the air we breathe in; otherwise no power plant could have been approved because bulk of the emissions are only carbon dioxide. Had EPA acted timely in sixties or even in seventies to curb CO2 emissions an alternative  energy  would have emerged by this time.

Industries and economics were high in the political agenda and the environment was overlooked.  Many drugs were introduced during this period to cure diseases that were actually caused by environmental pollution such as carbon dioxide. Both power industries and drug industries grew side by side without realizing that environment is degraded slowly which causes chronic diseases.

Australia is the largest consumers of power in terms of per capita consumption in the world and yet the new Government in Australia is pushing a bill in the parliament to repel Carbon tax introduced by previous Government. They are also planning to raise revenue up to $ 26 billion for medical research over a time. On one hand politicians want to freely allow unabated carbon emissions into the atmosphere and on the other hand they want to introduce new drugs that can cure diseases  actually caused by  such pollution. It is an anomalous situation created by politics of climate change. Unfortunately carbon pollution has turned into an energy related issue and attracted political attention world-wide. The high cost of cleaning carbon pollution has turned many politicians into skeptics of science on carbon pollution and climate change.

“More than 170 nations have agreed on the need to limit fossil fuel emissions to avoid dangerous human-made climate change, as formalized in the 1992 Framework Convention on Climate Change .However, the stark reality is that global emissions have accelerated (Fig. 1) and new efforts are underway to massively expand fossil fuel extraction by drilling to increasing ocean depths and into the Arctic, squeezing oil from tar sands and tar shale, hydro-fracking to expand extraction of natural gas, developing exploitation of methane hydrates, and mining of coal via mountaintop removal and mechanized long wall mining. The growth rate of fossil fuel emissions increased from 1.5%/year during 1980–2000 to 3%/year in 2000–2012, mainly because of increased coal use.” (Ref : 1)

The coal usage continues to grow especially in Asia due to expanding population and industrial growth and demand for low-cost energy.  USA is expected to achieve energy independence by 2015 which means more fossil fuels are in the pipeline. India and China are planning more coal-fired power plants in the coming decade. Australia is planning for massive expansion of coal and LNG and Coal seam methane gas for exports. Fracturing and hydrocracking of shale deposits are adding to the fuel.

Countries are more concerned with economic growth than the consequences of climate change. Despite recent warning from NASA that the depleting arctic glaciers have reached a ‘point of no return’ and the predicted sea level rise up to 10 feet is irreversible, there is a little reaction from countries across the globe.

There is a clear evidence that shows Green House Gas  emission will continue to increase in the future in spite of growing renewable energy projects because renewable solar panels, wind turbines and batteries will need more power from fossil fuels.  It is critically important to reduce carbon emission with great urgency by substituting fossil energy with renewable energy. For example, concentrated solar power (CSP) can be used instead of large-scale PV solar to reduce carbon footprint.

Solar energy is the origin of all other energy sources on the planet earth and solar energy will be the solution for a clean energy of the future. But how fast solar energy can be deployed commercially in a short span of time is a big issue. The increasing growth of fossil fuel production dwarfs the growth of renewable energy exposing the planet to catastrophic climate change. The GHG emission can be contained only by an aggressive reduction of CO2 emission into the atmosphere as well as by drastic reduction of fossil fuel production. This is possible only by using renewable Hydrogen. The cost of renewable hydrogen is high  but this is the price one has to pay to clean up the carbon pollution before the climate is  changed irreversibly. The obvious method to reduce carbon emissions is to tax carbon in such a way that it will no longer be economically viable to emit carbon to generate power or to transport. Paying carbon tax will be cheaper than paying for diseases and environmental degradation and natural disasters. Clean environment is the key for the survival of our planet and life on earth and one cannot put a price on such a life.

Ref 1:  Citation: Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F,et al (2013) Assessing ‘‘Dangerous Climate Change’’: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 8(12): e81648. doi:10.1371/journal.pone.0081648

 

 

 

When Carbon emission is high and the globe is warming due to such emissions then the simple and immediate solution to address this issue is to convert Carbon into Hydrocarbon, and the simplest Hydrocarbon is Methane (CH4).By simply introducing Hydrogen atom into Carbon atom the entire fuel property changes. For example the heating value of coal is only 5000-6500 kcal/kg at the maximum while the heating value of Methane (natural gas) increases to 9500 kcal/m3 by the above conversion. It means the same power generated by coal can be generated by using almost half the quantity of natural gas. Converting Carbon into substituted natural gas (SNG) is one way of addressing climate change in a short span of time. By switching over the SNG from coal will cut the CO2 emission almost by 50%.

Global warming due to GHG emission has become a serious environmental issue in recent times and more and more investments are made on renewable energy projects such as solar and wind etc. In spite of the major thrust on renewable energy projects the main source of power is still generated around the world  using fossil fuel especially Coal  due to its abundance and low-cost. Moreover the investment already made on fossil fuel infrastructures are too big to be ignored and investment required to substitute coal-fired power plants by renewable energy are too large and gestation periods are too long to maintain the current electricity demand and to meet the future demands. The cost of renewable energy also is high and there is great resistance by consumers to switch over to renewable energy. Many Governments are reluctant to subsidize renewable energy due to their financial constraints. That is why countries like China which is growing at the rate of more than 8% pa are trying to decrease the ‘Carbon intensity’ rather than closing down the coal–fired power plants by setting up SNG (synthetic natural gas) plants by gasification of  coal . This will cut their Carbon emissions almost by 50% surpassing all other countries around the world in short span of time, thus meeting their emission targets agreed in “Kyoto protocol”. They can also meet the increasing electricity demand by using “syngas” generated by coal gasification plants, while reducing the Carbon pollution. They will also be able to produce Diesel and Gasoline from coal similar to the “SESOL” plant in South Africa which is already operating successfully for the past 50 years.

“Leveraging Natural Gas to Reduce Greenhouse Gas Emissions” – a summary report by Center for Energy and Climate Solutions (C2ES) have highlighted the following in their report.

“Recent technological advances have unleashed a boom in U.S. natural gas production, with expanded supplies and substantially lower prices projected well into the future. Because combusting natural gas yields fewer greenhouse gas emissions than coal or petroleum, the expanded use of natural gas offers significant opportunities to help address global climate change.

The substitution of gas for coal in the power sector, for example, has contributed to a recent decline in U.S. greenhouse gas emissions. Natural gas, however, is not carbon-free. Apart from the emissions released by its combustion, natural gas is composed primarily of methane (CH4), a potent greenhouse gas, and the direct release of methane during production, transmission, and distribution may offset some of the potential climate benefits of its expanded use across the economy.

This report explores the opportunities and challenges in leveraging the natural gas boom to achieve further reductions in U.S. greenhouse gas emissions. Examining the implications of expanded use in key sectors of the economy, it recommends policies and actions needed to maximize climate benefits of natural gas use in power generation, buildings, manufacturing, and transportation. More broadly, the report draws the following conclusions:

•The expanded use of natural gas—as a replacement for coal and petroleum—can help our  efforts to cut greenhouse gas emissions in the near to mid-term, even as the economy grows. In 2013, energy sector emissions are at the lowest levels since 1994, in part because of the substitution of natural gas for other fossil fuels, particularly coal. Total U.S. emissions are not expected to reach 2005 levels again until sometime after 2040.

• Substitution of natural gas for other fossil fuels cannot be the sole basis for long-term U.S. efforts to address climate change because natural gas is a fossil fuel and its combustion emits greenhouse gases. To avoid dangerous climate change, greater reductions will be necessary than natural gas alone can provide. Ensuring that low-carbon investment dramatically expands must be a priority. Zero-emission sources of energy, such as wind, nuclear and solar, are critical, as are the use of carbon capture-and-storage technologies at fossil fuel plants and continued improvements in energy efficiency.

• Along with substituting natural gas for other fossil fuels, direct releases of methane into the atmosphere must be minimized. It is important to better understand and more accurately measure the greenhouse gas emissions from natural gas production and use in order to achieve emissions reductions along the entire natural gas value chain.”

Countries like India should emulate the Chinese model and become self-sufficient in meeting their growing energy demand without relying completely on imported Petroleum products. Import of petroleum products is the single largest foreign exchange drain for India, restricting their economic growth to less than 5%. Countries that rely completely on coal-fired power plants can set up coal hydro-gasification and gasification plants to cut their Carbon emissions in the immediate future while setting up renewable energy projects as a long-term solution.

Transiting Carbon economy into Hydrogen economy is a bumpy road and it will not be  easy to achieve in a short span of time. The logical path for such transition will be to switch coal based power generation into gas based power generation for the following reasons.

The largest Carbon emissions are from power generation and transportation. Transportation industry is already going through a transition from fossil fuel to Hydrogen. More future cars will be based either on Fuel cell or Electric and in both cases the fuel is the critical issue. Battery technology also will be an issue for Electric cars. It is more practical to generate Hydrogen from natural gas and to set up Hydrogen fuel stations than generating Hydrogen from solar-powered water electrolysis. With improvement on Fuel cell technology it is more likely that PEM Fuel cell may be able to operate on Hydrogen derived from natural gas that is completely free from any Sulphur compounds. Even for Electric cars, natural gas will play an important role as a fuel for power generation and distribution in the near future as we transit from Carbon economy to  full-fledged Hydrogen economy.

Countries like India with highest economic growth will have to be pragmatic by setting up more SNG plants with indigenous coal than depending on imported LNG. India has only two LNG terminals now in operation but do not have gas transmission infrastructure. With increasing demand for natural gas from all over the world and lack of LNG receiving terminals, India will have to face a serious fuel and power shortage in the future. By installing more coal gasification and SNG plants with down-stream products like Diesel and petrol, India can overcome the fuel and power shortage. In fact India set up the first coal gasification and Ammonia and Urea plant in Neyveli (Neyveli Lignite Corporation) way back in Fifties after her independence and it is time to visit the past.

Renewable energy is certainly the long-term solution for energy demand but we have to consider the amount of GHG emission associated with production PV solar panels, wind turbines and batteries. There is no easy fix to cut GHG emission in short span of time but switching Carbon to hydrocarbon will certainly reduce the emissions scientists are advocating and water (steam) is the key to introduce such Hydrogen atom into the Carbon atom. That is why we always believe “Water and Energy are two sides of the same coin” and renewable Hydrogen will be the key to our future energy.

For more information on the above topic please refer to the following link:

Source: Harvard University

Link: Coal to Natural gas Fuel switching and Carbon dioxide (CO2) emission reduction.

Date: Apr 2011.

Author: Jackson Salovaara.

“Over two-thirds of today’s proven reserves of fossil fuels need to still be in the ground in 2050 in order to prevent catastrophic levels of climate change” – a warning by scientists.

There is a great deal of debate on climate change due to man-made Carbon emissions and how to control it without any further escalation. The first obvious option will be to completely stop the usage of fossil fuel with immediate effect. But it is practically not feasible unless there is an alternative Non-Carbon fuel readily available to substitute fossil fuels. The second option will be to capture carbon emission and bury them under ground by CCS (Carbon capture and sequestration) method. But this concept is still not proven commercially and there are still many uncertainties with this technology, the cost involved and environmental implications etc.The third option will be not to use fresh fossil fuel  for combustion or capture and bury the Carbon emissions but convert the  Carbon emissions into a synthetic hydrocarbon fuel such as synthetic natural gas (SNG) and recycle them. By this way the level of existing Carbon emission can be maintained at current levels without any further escalation. At least the Carbon emission levels can be reduced substantially and maintained at lower levels to mitigate climate changes. It is technically feasible to implement the third option but it has to be implemented with great urgency.

One way of converting Carbon emission is to capture and purify them using conventional methods and then react with Hydrogen to produce synthetic natural gas (SNG)

CO2 + 4 H2 ———> CH4 + 2 H2O

The same process will be used by NASA to eliminate carbon built-up in the flights by crew members during their long voyage into the space and also to survive in places like Mars where the atmosphere is predominantly carbon dioxide. But we need Hydrogen  which is renewable so that the above process can be sustained in the future .Currently the cost of Hydrogen production using renewal energy sources are expensive due to high initial investment and the large energy consumption.

We have now developed a new process to generate syngas using simple coal, which is predominantly Hydrogen to be used as a Carbon sink to convert Carbon emissions into synthetic natural gas (SNG). The same Hydrogen rich syngas can be directly used to generate power using gas turbine in a simple or combined cycle mode. The Carbon emission from the gas turbine can be converted into SNG (synthetic natural gas) using surplus Hydrogen-rich  syngas. The SNG thus produced can be distributed for CHP (combined heat and power) applications so that the Carbon emission can be controlled or distributed. By implementing the above process one should be able to maintain Carbon at specific level in the atmosphere. Existing coal-fired power plants can retrofit this technology so that they will be able to cut their Carbon emissions substantially; they can also produce SNG as a by-product using their Carbon emissions and achieve zero Carbon emission at their site while generating revenue by sale of SNG.

Coal is the cheapest and widely used fossil fuel for power generation all over the world. Therefore it will be a win situation for everyone to use coal and also to cut Carbon emissions that can address the problems of climate change. Meanwhile research is going on to generate renewable Hydrogen cheaply directly from water using various technologies. But we believe we are still far away from achieving this goal and we require immediate solution to address our climate change problems.

Recently BASF made a press release : http://www.basf.com/group/press release/P-13-351‎ claiming a break-through technology to generate Hydrogen from natural gas without any CO2 emissions.

The Carbon emission in the atmosphere is steadily increasing.  The latest statistics indicates that it has reached a staggering 35.6 billion tons/yr, a 2.6% increase over the previous year, thanks to the growth of China. It is becoming clear that there is a relationship between the Carbon emission, global warming and erratic weather patterns around the world. According to ‘The Guardian’,

“The chances of the world holding temperature rise to 2C – the level of global warming considered “safe” by scientists – appear to be fading fast with US scientists reporting the second-greatest annual rise in CO2emissions in 2012. Carbon dioxide levels measured at Mauna Loa observatory in Hawaii jumped by 2.67 parts per million (ppm) in 2012 to 395ppm, said Pieter Tans, who leads the greenhouse gas measurement team for the US National Oceanic and Atmospheric Administration (NOAA). The record was an increase of 2.93ppm in 1998.

The jump comes as a study published in Science on Thursday looking at global surface temperatures for the past 1,500 years warned that “recent warming is unprecedented”, prompting UN climate chief, Christiana Figures, to say that “staggering global temps show urgent need to act. Rapid climate change must be countered with accelerated action.” Tans told the Associated Press the major factor was an increase in fossil fuel use. “It’s just a testament to human influence being dominant”, he said. “The prospects of keeping climate change below that [two-degree goal] are fading away.

Preliminary data for February 2013 show CO2 levels last month standing at their highest ever recorded at Manua Loa, a remote volcano in the Pacific. Last month they reached a record 396.80ppm with a jump of 3.26ppm parts per million between February 2012 and 2013. Carbon dioxide levels fluctuate seasonally, with the highest levels usually observed in April. Last year the highest level at Mauna Loa was measured at 396.18ppm. What is disturbing scientists is the acceleration of CO2concentrations in the atmosphere, which are occurring in spite of attempts by governments to restrain fossil fuel emissions. According to the observatory, the average annual rate of increase for the past 10 years has been 2.07ppm – more than double the increase in the 1960s. The average increase in CO2 levels between 1959 to the present was 1.49ppm per year.

The Mauna Loa measurements coincide with a new peer-reviewed study of the pledges made by countries to reduce CO2 emissions. The Dutch government’s scientific advisers show that rich countries will have to reduce emissions by 50% percent below 1990 levels by 2020 if there is to be even a medium chance of limiting warming to 2C, thus preventing some of climate  change‘s worst impacts.”The challenge we already knew was great is even more difficult”, said Kelly Levin, a researcher with the World Resources Institute in Washington. “But even with an increased level of reductions necessary, it shows that a 2° goal is still attainable – if we act ambitiously and immediately.” Extreme weather, which is predicted by climate scientists to occur more frequently as the atmosphere warms and CO2 levels rise, has already been seen widely in 2013. China and India have experienced their coldest winter in decades and Australia has seen a four-month long heat wave with 123 weather records broken during what scientists are calling it ‘angry summer’. “We are in [getting] into new climatic territory. And when you get records being broken at that scale, you can start to see a shifting from one climate system to another. So the climate has in one sense actually changed and we are now entering a new series of climatic conditions that we just haven’t seen before”, said Tim Flannery, head of the Australian government’s climate change commission, this week. Earlier this week the Met Office warned that the “extreme” patterns of flood and drought experienced by Britain in 2012 were likely to become more frequent. One in every five days in 2012 saw flooding but one in four days were in drought”.

The biggest question now is how to put this Carbon genie back into the bottle? renewable energy may be an answer to curtail future Carbon emissions but what about the existing coal-fired power plants that constitutes 60% of the existing power generation in the world? There is no easy solution. But the “Law of conservation of mass” gives us a clue.The Carbon we dig from the earth in the form of coal, combusted into the atmosphere as Carbon dioxide may be captured and recycled back into the system in the form of a fuel.By this way, we may not need fresh coal to be mined.To achive this feat,we need Hydrogen from a renewable source.The renewable Hydrogen can be combined with Carbon dioxide captured from the coal-fired power plants to generate synthetic natural gas (SNG).The SNG generated by this method can be used for future power generation, substituting Coal and future carbon emission can be recycled in the form of SNG. This approach will open up a range of possibilities and potentially cut the carbon emission to zero.Annual CO2 growthAtmospheic Carbon increaseCO2 emissionsGlobal Carbon emissionHydrosol cycleHydrosol thremocycle

Many companies round the world including DOE (Department of energy,Govt of USA) are trying to develop an economically viable method to generate Hydrogen with an estimated cost of poduction at  $ 2.50 /kg of Hydrogen. One potential method is to generate Hydrogen by splitting water using a thermo-chemical process using concentrated solar therml energy developed by European Union called “Hydrosol cycle”. The method by which Hydrogen is generated should be free from any Carbon emision. To clean up  1 Kg Carbon dioxide one will require at least 0.2kg Hydrogen. For example, a 100Mw coal fired power plant emitting about 2256 Mt CO2/day will require about 451 Mt of Hydrogen/day, costing about $1,127,500 per day.It will cost roughly $500/Mt of C02 to  put the ‘ Carbon genie’  back into the bottle! One can imagein the cost of cleaning up  35.6 billion tons of Carbon dioxide  from the atmosphere.Only a Carbon free Hydrogen derived from water can save the world from a potential catastrophe.

There is a raging debate going on around the world especially in US about the global warming and its causes, among scientists and the public alike. When IPCC released its findings on the connection between greenhouse gas emission and the global warming and its disastrous consequences, there was an overwhelming disbelief and skepticism in many people. In fact many scientists are skeptical even now   about these findings and many of them published their own theories and models to prove their skepticism with elaborate ‘scientific explanations’.   I am not going into details whether greenhouse gas emission induced by human beings causes the globe to warm or not, but certainly we have emitted billions of  tons of Carbon in the form of Carbon dioxide into the atmosphere since industrial revolution. Bulk of these emissions is from power plants fueled by Coal, oil and gas. Why power plants emit so much Carbon into the atmosphere and why Governments around the world allow it in the first place?  When the emission of Oxide of Nitrogen and Sulfur are restricted by EPA why they did not restrict Oxides of carbon? The reason is very simple. They did not have a technology to generate heat without combustion and they did not have a technology to generate power without heat. It was the dawn of industrial revolution and steam engines were introduced using coal as a fuel. The discovery of steam engines was so great and nobody was disturbed by the black smoke it emitted. They knew very well that the efficiency of a steam engine was low as shown by Carnot cycle, yet steam engine was a new discovery and Governments were willing to condone Carbon emission. Governments were happy with steam engine because it could transport millions of people and goods in bulk across the country and Carbon emission was not at all an issue. Moreover carbon emission did not cause any problem like emission of oxides of Sulfur because it was odorless, colorless and it was emitted above the ground level away from human beings. However the effect of Carbon is insidious. Similarly, power generation technology was developed by converting thermal energy into electrical energy with a maximum efficiency of 33%.This means only 33% of the thermal energy released by combustion of coal is converted into electricity. When the resulting electricity is transmitted across thousands of kilometers by high tension grids, further 5-10% power is lost in the transmission. When the high tension power is stepped down through sub stations to lower voltage such as 100/200/400V further 5% power is lost. The net power received by a consumer is only 28% of the heat value of the fuel in the form of electricity. The balance 67% of heat along with Greenhouse gases from the combustion of coal is simply vented out into the atmosphere. It is the most inefficient method to generate power. Any environmental pollution is the direct result of inefficiency of the technology. Governments and EPA around the world ignore this fact .Thank to President Obama who finally introduced the pollution control bill for power plants after 212 years of industrial revolution.  Still this bill did not go far enough to control Carbon emission in its current form. Instead of arguing whether globe is warming due to emission of Carbon by human beings or not, Scientists should focus on improving the science and technology of power generation. For example, the electrical efficiency of a Fuel cell is more than 55% compared to conventional power generation and emits reduced or no carbon. Recent research by MIT shows that such conversion of heat into electricity can be achieved up to 90% compared to current levels of 35%.Had we developed such a technology earlier, probably we will not be discussing about GHG and global warming now. MIT research group is now focusing on developing new type of PV and according to their press release: “Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Micro gap thermophotovoltaics take advantage of evanescent waves to obtain higher throughput, with the power per unit area limited by the internal blackbody, which is n2 higher. We propose that even higher power per unit area can be achieved by taking advantage of thermal fluctuations in the near-surface electric fields. For this, we require a converter that couples to dipoles on the hot side, transferring excitation to promote carriers on the cold side which can be used to drive an electrical load. We analyze the simplest implementation of the scheme, in which excitation transfer occurs between matched quantum dots. Next, we examine thermal to electric conversion with a glossy dielectric (aluminum oxide) hot-side surface layer. We show that the throughput power per unit active area can exceed the n2 blackbody limit with this kind of converter. With the use of small quantum dots, the scheme becomes very efficient theoretically, but will require advances in technology to fabricate.” Ref:J.Appl.Phys. 106,094315c(2009); http://dx.doi.org/10.1063/1.3257402 Quantum-coupled single-electron thermal to electric conversion scheme”. Power generation and distribution using renewable energy sources and using Hydrogen as an alternative fuel is now emerging. Distributed energy systems may replace centralized power plants in the future due to frequent grid failures as we have seen recently in India. Most of the ‘black outs’ are caused  by grid failures due to cyclones, tornadoes and other weather related issues, and localized distribution system with combined heat and power offers a better alternative. For those who are skeptical about global warming caused by man-made greenhouse gases the question still remains, “What happened to billions of tons of Caron dioxide emitted into  the atmosphere by power plants and transportation  since industrial revolution?”.          

Those who studied chemistry and conducted laboratory experiments in universities will be familiar with precautionary measures we take to avoid  accidents. Aprons, gloves, goggles and fume cub-boards with exhaust fans are some few examples of protective measures from flames, hot plates and fumes. The blue color of the flame represented the degree of hotness of the flame from Bunsen burner; the pungent smell pointed to the ‘Gas plant’ that generated ‘water gas’ for Bunsen burners. The familiar smells of chemicals would bring ‘nostalgic memories’ of college days. Each bottle of chemicals would display a sign of warning ‘Danger or Poison’. We could recognize and identify even traces of  gases or fumes or chemicals immediately. Those memories embedded deeply in our memories and I vividly remembered even after few decades I left university.

I could smell traces of Chlorine in the air even at a distance of 20 miles from a Chloroalkali plant in sixties, when air pollution controls were not stringent. People who lived around the factory probably were used to live with that smell for generations. Many families had not breathed  fresh air in their life time, because they have not breathed air without traces of chlorine.They lived all their lives in the same place because agriculture was their profession. Many people developed breathing problems during  their old ages and died of asthma and tuberclosis.The impact of these fumes cannot be felt in months and years but certainly can be felt after decades especially at old ages, when the body’s immune system deteriorates. Bhopal gas accident in India is a grim reminder of  such tragedy of chemical accidents and how they can contaminate air, water and earth and degrade human lives. But we learnt any lessons from those accidents?

During experimental thermonuclear explosion in the desert of Australia by then British army, people were directly exposed to nuclear radiation. Many of those  who saw this explosion developed some form of cancer or other later in their life .They were treated as heroes then. After several decades of this incident, many exposed to this experiment are now demanding compensation from current British government. But have we learnt any lessons from those incidents? Many politicians still advocate ‘Nuclear energy as a safe and clean energy’. Yes, until we meet with an another accident!

We human beings identified the presence of  chemicals in Nature and used them for our scientific developments. We identified fossil fuels as ‘Hydrocarbons’ and burn them to generate power and to run our cars. We emit toxic gases and fumes every second of our lives, when we switch our lights on or start our cars.Imagine the amount of gases and fumes we emit everyday all over the world by billions of people for several decades. It is a simple common sense that we are responsible for these emissions and we contaminate the air we breathe. Nature does not burn Hydrocarbons everyday or every month or every year. In fact Nature buried these Hydrocarbons deep down the earth like we bury our dead.

Can people who breathed Chlorine for decades and died of asthma or tuberculosis prove that they died due constant inhalation of Chlorine emitted by the Chloroalkali plant? The Court and Authorities will demand ‘hard evidence’ to prove that Chlorine emitted by Chloroalkli plants caused these diseases. We use science when it suits us and we become skeptics when it does not suit us. They know it is almost impossible to prove such cases in our legal system and they can get away scot-free. The same argument applies to our ‘Greenhouse gas emission’ and ‘Global warming’.

We contaminate  our air, water and earth with our population explosion, industrialization and our life styles. Yet, major industrialized countries are not willing to cut their emissions but want to carry on their ‘economic growth’. But these countries got it completely wrong. In chemical experiments, one can draw conclusions by ‘observations’ and ‘Inference’. Inference is a scientific tool and not a guess work. From overwhelming evidences of natural disasters occurring around the world one can ‘infer’ that human activities cause these disasters. Nature is now showing this by devastating ‘the business and economic’ interest of nations because that is the only way Governments can learn lessons. They don’t need ‘harder evidence’ than  monetary losses. According to recent reports:

“The monetary losses from 2011’s natural catastrophes reached a record $380 billion, surpassing the previous record of $220 billion set in 2005. The year’s three costliest natural catastrophes were the March earthquake and tsunami in Japan (costing $210 billion), the August-November floods in Thailand ($40 billion), and the February earthquake in New Zealand ($16 billion).

The report notes that Asia experienced 70 percent, or $265 billion, of the total monetary losses from natural disasters around the world—up from an average share of 38 percent between 1980 and 2010. This can be attributed to the earthquake and tsunami in Japan, as well as the devastating floods in Thailand: Thailand’s summer monsoons, probably influenced by a very intensive La Niña situation, created the costliest flooding to date, with $40 billion in losses.”

%d bloggers like this: