Skip navigation

Many universities, research and development institutions and industries are studying various biological processes to produce Hydrogen using different sources of organic materials such as Starch, Glucose, Bioethanol and cellulosic materials. However many of these technologies are at an early “proof of concept’ stages.  Moreover these processes depend upon site and availability of specific raw materials in these locations. For example, Brazil has been very successful in the production of Bioethanol from sugar cane molasses and using it as the fuel for cars. Brazil has also successfully used Bioethanol as a substitute for Naphtha as a feedstock for the production of ethylene, a precursor for a several plastics such as PVC and Polyethylene and Glycols. Bioethanol is a classic example of biological process than can successfully substitute Gasoline .Many industrial raw materials are also derived from Sugar cane and Corn Starch. The main issue in substituting Gasoline with bio-chemicals is political, in many countries. India has produced industrial alcohol from sugarcane molasses for  number of years but they were not be able successfully substitute Gasoline with Alcohol. They have to fix the price of Alcohol in relation to the price of Gasoline or Naptha.This pricing mechanism is critical.

We have been using coal as the raw material for several decades not only to generate power but also to produce host of organic chemicals and fertilizers such as Urea, coal-tar chemicals such as dyes and pharmaceuticals. These industries later switched over to oil and Gas. Now the world is facing depletion of fossil fuels at a faster rate. Greenhouse emission and global warming threats are looming large. There is a clear sign that the energy prices will sharply increase in the near future. Renewable energy projects are at early stages and their first costs and cost of productions are much higher compared to fossil fuel based power generation. However biological processes and biofuels offer a glimpse of hope to get over the energy crisis and also to mitigate greenhouse gas emissions.

Production of   Biohydrogen using bio-organic organic materials such as starch, glucose and cellulosic materials are under development, but it may be a decade before they can be successfully commercialized. But production of Bioethanol and Biogas are well-known technologies. Generation of Biogas from agricultural waste, food waste and municipal solid waste and waste water are known technologies. However Methane the major constituents of biogas, is a potential greenhouse gas. The Biogas can be easily cleaned from other impurities such as Carbon dioxide and Hydrogen sulfide and can be readily converted in Hydrogen gas by steam reformation. This will substantially increase the energy efficiency of Biogas plants.

Many developing countries can adopt these technologies on a wider scale and promote Bioethenaol and Biogas generation to substitute petroleum oil and gas. They can convert Gasoline cars into 100% Bioethanol (anhydrous) or blended with gasoline fuels for cars. These technologies are commercially available. Some countries in Asia, Africa and South America produce various starches such as Tapioca starch for industrial applications. Vegetable oils such as Jatropha and Castor oils are excellent for bio-fuels and lubricants. Though it is theoretically possible to substitute most of the petrochemicals with bio- organic materials, it is important that food products such as corn should not be diverted for commercial applications such as fuel.

The coming decade will be a challenging one and Hydrogen generation from various biological organic materials can substitute fossil fuels at a much faster rate. A judicial mix of bio-energy and renewable energy such as solar and wind should help the world to overcome the challenges.



  1. Reblogged this on Cleantech Solutions.

  2. I’m satisfied, I must say. Actually rarely will i encounter your blog that’s each educative and entertaining, and let me tell you, you have strike the claw on the head. Your thought is outstanding; the issue is something not enough folks are speaking intelligently about. I’m very happy that I stumbled across this in my hunt for something with this.

  3. One variation ߋf this enticing dessertt іs the Frogurt,
    ɑ popular snack ɑmong many Europeans. A sսb-species օf Bifidobacterium
    animalis іs սsed by thee yogurt manufacturer Dannon, սnder the trade ոame “Bifidus Regularis. There are many low fat dairy options available, switch them out for higher fat products to save fat and calories.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: